EPC2031 – Enhancement Mode Power Transistor

 V_{DS} , 60 V $R_{DS(on)}$, 2.6 m Ω I_D, 48 A

Gallium Nitride's exceptionally high electron mobility and low temperature coefficient allows very low R_{DS(on)}, while its lateral device structure and majority carrier diode provide exceptionally low Q_G and zero Q_{RR}. The end result is a device that can handle tasks where very high switching frequency, and low on-time are beneficial as well as those where on-state losses dominate.

Maximum Ratings				
	PARAMETER	VALUE	UNIT	
V	Drain-to-Source Voltage (Continuous)	60	M	
V _{DS}	Drain-to-Source Voltage (up to 10,000 5 ms pulses at 150°C)	72	V	
	Continuous ($T_A = 25^{\circ}C$, $R_{\theta JA} = 11^{\circ}C/W$)	48	A	
I _D	Pulsed (25°C, T_{PULSE} = 300 µs)	450		
V	Gate-to-Source Voltage	6	V	
V _{GS}	Gate-to-Source Voltage	-4		
٦	Operating Temperature	-40 to 150	°C	
T _{STG}	Storage Temperature	-40 to 150	Ľ	

	Thermal Characteristics			
	PARAMETER	ТҮР	UNIT	
R _{θJC}	Thermal Resistance, Junction-to-Case	0.45		
R _{θJB}	Thermal Resistance, Junction-to-Board	3.9	°C/W	
R _{θJA}	Thermal Resistance, Junction-to-Ambient (Note 1)	45		

R4 board. details.

	Static Characteristics ($T_j = 25^{\circ}$ C unless otherwise stated)						
	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT	
BV _{DSS}	Drain-to-Source Voltage	$V_{GS} = 0 V, I_{D} = 1 mA$	60			V	
I _{DSS}	Drain-Source Leakage	$V_{GS} = 0 V, V_{DS} = 48 V$		0.1	0.8	mA	
	Gate-to-Source Forward Leakage	$V_{GS} = 5 V$		1	9	mA	
I _{GSS}	Gate-to-Source Reverse Leakage	$V_{GS} = -4 V$		0.1	0.8	mA	
V _{GS(TH)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 15 \text{ mA}$	0.8	1.4	2.5	V	
R _{DS(on)}	Drain-Source On Resistance	$V_{GS} = 5 \text{ V}, \text{ I}_{D} = 30 \text{ A}$		2	2.6	mΩ	
V_{SD}	Source-Drain Forward Voltage	$I_S = 0.5 \text{ A}, V_{GS} = 0 \text{ V}$		1.8		V	

All measurements were done with substrate connected to source.

R _{θJA}	Thermal Resistance, Junction-to-Ambient (Note 1)	45	
UJA	s determined with the device mounted on one square inch of copper pad, single lay pc-co.com/epc/documents/product-training/Appnote_Thermal_Performance_of_e		

EFFICIENT POWER CONVERSION

RoHS 🕅

EPC2031 eGaN[®] FETs are supplied only in passivated die form with solder bumps. Die Size: 4.6 mm x 2.6 mm

- High Frequency DC-DC Conversion
- Motor Drive
- Industrial Automation
- Synchronous Rectification
- Class-D Audio

Halogen-Free

1

Dynamic Characteristics ($T_j = 25^{\circ}C$ unless otherwise stated)						
	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
C _{ISS}	Input Capacitance			1640	2000	_
C _{RSS}	Reverse Transfer Capacitance	$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}$		35		
C _{OSS}	Output Capacitance			980	1500	pF
C _{OSS(ER)}	Effective Output Capacitance, Energy Related (Note 2)	- V _{DS} = 0 to 30 V, V _{GS} = 0 V		1340		
C _{OSS(TR)}	Effective Output Capacitance, Time Related (Note 3)			1580		
R_{G}	Gate Resistance			0.4		Ω
Q _G	Total Gate Charge	$V_{DS} = 30 \text{ V}, V_{GS} = 5 \text{ V}, I_D = 30 \text{ A}$		16	21	
Q _{GS}	Gate-to-Source Charge			5		
Q _{GD}	Gate-to-Drain Charge	$V_{DS} = 30 \text{ V}, \text{ I}_{D} = 30 \text{ A}$		3.2		
Q _{G(TH)}	Gate Charge at Threshold			3.6		nC
Q _{OSS}	Output Charge	$V_{DS} = 30 V, V_{GS} = 0 V$		48	72	
Q _{RR}	Source-Drain Recovery Charge			0		

All measurements were done with substrate connected to source.

Note 2: C_{OSS(ER)} is a fixed capacitance that gives the same stored energy as C_{OSS} while V_{DS} is rising from 0 to 50% BV_{DSS}.

Note 3: C_{OSS(TR)} is a fixed capacitance that gives the same charging time as C_{OSS} while V_{DS} is rising from 0 to 50% BV_{DSS}.

Figure 2: Transfer Characteristics

V_{GS} – Gate-to-Source Voltage (V)

4.0

4.5

5.0

3.5

4

2

0 <mark>لے</mark> 2.5

3.0

EPC2031

Option 1 : Intended for use with SAC305 Type 4 solder.

Option 2 : Intended for use with SAC305 Type 3 solder.

Land pattern is solder mask defined Solder mask opening is 330 µm It is recommended to have on-Cu trace PCB vias

Pads 1 and 2 are Gate; Pads 5, 6, 7, 8, 9, 15, 16, 17, 18, 19 are Drain; Pads 3, 4, 10, 11, 13, 14, 20, 21, 22, 23, 24 are Source; Pad 12 is Substrate*

*Substrate pin should be connected to Source

Recommended stencil should be 4 mil (100 µm) thick, must be laser cut, openings per drawing.

Additional assembly resources available at https://epc-co.com/epc/DesignSupport/AssemblyBasics.aspx

RECOMMENDED **STENCIL DRAWING**

≧1

300

RECOMMENDED

(units in μm)

(units in µm)

4600

§\$

350

Recommended stencil should be 4 mil (100 µm) thick, must be laser cut, openings per drawing.

2600

Additional assembly resources available at https://epc-co.com/epc/DesignSupport/AssemblyBasics.aspx

Efficient Power Conversion Corporation (EPC) reserves the right to make changes without further notice to any products herein to improve reliability, function or design. EPC does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. eGaN® is a registered trademark of Efficient Power Conversion Corporation. EPC Patent Listing: epc-co.com/epc/AboutEPC/Patents.aspx

Information subject to change without notice. Revised June, 2020

EPC2031

EPC – POWER CONVERSION TECHNOLOGY LEADER EPC-CO.COM ©2020

1000

6