
7618C–AVR–07/08

USB DFU
Bootloader
Datasheet

AT90USB128x
AT90USB64x
AT90USB162
AT90USB82
ATmega32U4
ATmega16U4
Features
• USB Protocol

– Based on the USB DFU class
– Autobaud (8/16 MHz crystal)

• In-System Programming
– Read/Write Flash and EEPROM on-chip memories
– Read Device ID
– Full chip Erase
– Start application command

• In-Application Programming
– Software Entry-points for on-chip flash drivers

1. Description
The 8bits mega AVR with USB interface devices are factory configured with a
USB bootloader located in the on-chip flash boot section of the controller.

This USB bootloader allows to perform In-System Programming from an USB
host controller without removing the part from the system or without a
pre-programmed application, and without any external programming interface.

This document describes the USB bootloader functionalities as well as the serial
protocol to efficiently perform operations on the on chip Flash memories (Flash
and EEPROM).

2. Bootloader Environment
The bootloader is located in the boot section of the on-chip Flash memory, it manages the USB
communication protocol and performs read/write operations to the on-chip memories
(Flash/EEPROM).

The USB bootloader is loaded in the “Bootloader Flash Section” of the on-chip Flash memory.
The size of the bootloader flash section must be larger than the bootloader size.USB products
are factory configured with the default on-chip USB bootloader and the required bootsection
configuration.

Table 2-1. USB Bootloader Parameters

Figure 2-1. Physical Environment

3. Bootloader Activation
As specified in the AT90USB datasheet, the bootloader can be activated by one of the following
conditions:

• Regular application execution: A jump or call from the user application program. This may
be initiated by a trigger such as a command received via USB, USART or SPI and decoded
by the application.

Product
Flash Bootsection Size

Configuration VID / PID
Bootloader Start Address

(word address)

AT90USB1287
4 KWord 0x03EB / 0x2FFB 0xf000

AT90USB1286

AT90USB647

2 KWord

0x03EB / 0x2FF9 0x7800
AT90USB646

AT90USB162 0x03EB / 0x2FFA 0x1800

AT90USB82 0x03EB / 0x2FF7 0x0800

ATmega32U4 0x03EB / 0x2FF4 0x3800

ATmega16U4 0x03EB / 0x2FF3 0x0800

USB Bootloader
in Boot section

Flash
Application sectionRead/Write

USB
Interface

EEPROM Data
Read/Write

DFU Class
 2
7618C–AVR–07/08

• Boot Reset Fuse The Boot Reset Fuse (BOOTRST) can be programmed so that the Reset
Vector points to the Boot Flash section start address after reset. Once the user code is
loaded, a bootloader command (“start application”) can start executing the application code.
Note that the fuses cannot be changed by the MCU itself. This means that once the Boot
Reset Fuse is programmed, the Reset Vector will always point to the Bootloader Reset and
the fuse can only be changed through the serial or parallel programming interface. The
BOOTRST fuse is not active in the default factory configuration.

• External Hardware conditions The Hardware Boot Enable fuse (HWBE) can be
programmed so that upon special hardware conditions under reset, the bootloader execution
is forced after reset.

These different conditions are summarized in Figure 3-1 on page 3.

Figure 3-1. Boot Process

4. Protocol

4.1 Device Firmware Upgrade Introduction
Device Firmware Upgrade (DFU) is the mechanism implemented to perform device firmware
modifications. Any USB device can exploit this capability by supporting the requirements speci-
fied in this document.

Because it is unpractical for a device to concurrently perform both DFU operations and its nor-
mal run-time activities, these normal activities must cease for the duration of the DFU
operations. Doing so means that the device must change its operating mode; i.e., a printer is not
a printer while it is undergoing a firmware upgrade; it is a PROM programmer. However, a

BOOTRST = 0

Start Bootloader

Yes

PC = 0000h

No

PC = boot loader section

Ext Hardware
conditions

No

Yes

Application
Running

"Software activation (jump)"

Reset

S
of

tw
ar

e
E

xe
cu

tio
n

H
ar

dw
ar

e
B

oo
t p

ro
ce

ss
 3
7618C–AVR–07/08

device that supports DFU is not capable of changing its mode of operation on its own. External
(human or host operating system) intervention is required.

4.2 DFU Specific Requests
In addition to the USB standard requests, 7 DFU class-specific requests are used to accomplish
the upgrade operations:

Table 4-1. DFU Class-specific Requests

4.3 DFU Descriptors Set
The device exports the DFU descriptor set, which contains:

• A DFU device descriptor
• A single configuration descriptor
• A single interface descriptor (including descriptors for alternate settings, if present)

4.3.1 DFU Device Descriptor

This descriptor is only present in the DFU mode descriptor set. The DFU class code is reported
in the bDeviceClass field of this descriptor.

Table 4-2. DFU Mode Device Descriptor

bmRequestType bRequest wValue wIndex wLength Data

0010 0001b DFU_DETACH (0) wTimeout Interface (4) Zero none

0010 0001b DFU_DNLOAD (1) wBlock Interface (4) Length Firmware

1010 0001b DFU_UPLOAD (2) wBlock Interface (4) Length Firmware

1010 0001b DFU_GETSTATUS (3) Zero Interface (4) 6 Status

0010 0001b DFU_CLRSTATUS (4) Zero Interface (4) Zero none

1010 0001b DFU_GETSTATE (5) Zero Interface (4) 1 State

0010 0001b DFU_ABORT (6) Zero Interface (4) Zero none

Offset Field Size Value Description

0 bLength 1 12h Size of this descriptor, in bytes

1 bDescriptorType 1 01h DFU functional descriptor type

2 bcdUSB 2 0100h USB specification release number in binary coded decimal

4 bDeviceClass 1 FEh Application Specific Class Code

5 bDeviceSubClass 1 01h Device Firmware Upgrade Code

6 bDeviceProtocol 1 00h The device does not use a class specific protocol on this interface

7 bMaxPacketSize0 1 32 Maximum packet size for endpoint zero (limited to 32 due to Host side
driver)

8 idVendor 2 03EBh Vendor ID

10 idProduct 2 2FFBh Product ID

12 bcdDevice 2 0x0000 Device release number in binary coded decimal

14 iManufacturer 1 0 Index of string descriptor
 4
7618C–AVR–07/08

4.3.2 DFU Configuration Descriptor
This descriptor is identical to the standard configuration descriptor described in the USB DFU
specification version 1.0, with the exception that the bNumInterfaces field must contain the value
01h.

4.3.2.1 DFU Interface Descriptor
This is the descriptor for the only interface available when operating in DFU mode. Therefore,
the value of the bInterfaceNumber field is always zero.

Table 4-3. DFU Mode Interface Description

Note: 1. Alternate settings can be used by an application to access additional memory segments. In this case, it is suggested that
each alternate setting employ a string descriptor to indicate the target memory segment; e.g., “EEPROM”. Details concern-
ing other possible uses of alternate settings are beyond the scope of this document. However, their use is intentionally not
restricted because the authors anticipate that implements will devise additional creative uses for alternate settings.

4.4 Commands Description

The protocol implemented in the AT90USB bootloader allows to:

• Initiate the communication
• Program the Flash or EEPROM Data
• Read the Flash or EEPROM Data
• Program Configuration Information
• Read Configuration and Manufacturer Information
• Erase the Flash
• Start the application

Overview of the protocol is detailed in “Appendix-A” on page 18.

15 iProduct 1 0 Index of string descriptor

16 iSerialNumber 1 0 Index of string descriptor

17 bNumConfigurations 1 01h One configuration only for DFU

Offset Field Size Value Description

Offset Field Size Value Description

0 bLength 1 09h Size of this descriptor, in bytes

1 bDescriptorType 1 04h INTERFACE descriptor type

2 bInterfaceNumber 1 00h Number of this interface

3 bAlternateSetting 1 00h Alternate setting(1)

4 bNumEndpoints 1 00h Only the control pipe is used

5 bInterfaceClass 1 FEh Application Specific Class Code

6 bInterfaceSubClass 1 01h Device Firmware Upgrade Code

7 bInterfaceProtocol 1 00h The device does not use a class specific protocol on this interface

8 iInterface 1 00h Index of the String descriptor for this interface
 5
7618C–AVR–07/08

4.5 Device Status

4.5.1 Get Status
The Host employs the DFU_GETSTATUS request to facilitate synchronization with the device.
This status gives information on the execution of the previous request: in progress/OK/Fail/...

The device responds to the DFU_GETSTATUS request with a payload packet containing the fol-
lowing data:

Table 4-4. DFU_GETSTATUS Response

Table 4-5. bStatus values

bmRequestType bRequest wValue wIndex wLength Data

1010 0001b DFU_GETSTATUS (3) Zero Interface (4) 6 Status

0010 0001b DFU_CLRSTATUS (4) Zero Interface (4) Zero none

Offset Field Size Value Description

0 bStatus 1 Number An indication of the status resulting from the
execution of the most recent request.

1 bwPollTimeOut 3 Number

Minimum time in milliseconds that the host should
wait before sending a subsequent
DFU_GETSTATUS. The purpose of this field is to
allow the device to dynamically adjust the amount of
time that the device expects the host to wait
between the status phase of the next
DFU_DNLOAD and the subsequent solicitation of
the device’s status via DFU_GETSTATUS.

4 bState 1 Number
An indication of the state that the device is going to
enter immediately following transmission of this
response.

5 iString 1 Index Index of status description in string table.

Status Value Description

OK 0x00 No error condition is present

errTARGET 0x01 File is not targeted for use by this device

errFILE 0x02 File is for this device but fails some vendor-specific verification test

errWRITE 0x03 Device id unable to write memory

errERASE 0x04 Memory erase function failed

errCHECK_ERAS
ED 0x05 Memory erase check failed

errPROG 0x06 Program memory function failed

errVERIFY 0x07 Programmed memory failed verification

errADDRESS 0x08 Cannot program memory due to received address that is out of range

errNOTDONE 0x09 Received DFU_DNLOAD with wLength = 0, but device does not think it has all the
data yet.

errFIRMWARE 0x0A Device’s firmware is corrupted. It cannot return to run-time operations
 6
7618C–AVR–07/08

Table 4-6. bState Values

4.5.2 Clear Status
Each time the device detects and reports an error indication status to the host in response to a
DFU_GETSTATUS request, it enters the dfuERROR state. After reporting any error status, the
device can not leave the dfuERROR state, until it has received a DFU_CLRSTATUS request.
Upon receipt of DFU_CLRSTATUS, the device sets status to OK and move to the dfuIDLE state.
Once the device is in the dfuIDLE state it is then able to move to other states.

errVENDOR 0x0B iString indicates a vendor-specific error

errUSBR 0x0C Device detected unexpected USB reset signaling

errPOR 0x0D Device detected unexpected power on reset

errUNKNOWN 0x0E Something went wrong, but the device does not know what it was

errSTALLEDPK 0x0F Device stalled an unexpected request

State Value Description

appIDLE 0 Device is running its normal application

appDETACH 1 Device is running its normal application, has received the DFU_DETACH
request, and is waiting for a USB reset

dfuIDLE 2 Device is operating in the DFU mode and is waiting for requests

dfuDNLOAD-SYNC 3 Device has received a block and is waiting for the Host to solicit the status via
DFU_GETSTATUS

dfuDNBUSY 4 Device is programming a control-write block into its non volatile memories

dfuDNLOAD-IDLE 5 Device is processing a download operation. Expecting DFU_DNLOAD requests

dfuMANIFEST-SYNC 6

Device has received the final block of firmware from the Host and is waiting for
receipt of DFU_GETSTATUS to begin the Manifestation phase
or
device has completed the Manifestation phase and is waiting for receipt of
DFU_GETSTATUS.

dfuMANIFEST 7 Device is in the Manifestation phase.

dfuMANIFEST-WAIT-
RESET 8 Device has programmed its memories and is waiting for a USB reset or a power

on reset.

dfuUPLOAD-IDLE 9 The device is processing an upload operation. Expecting DFU_UPLOAD
requests.

dfuERROR 10 An error has occurred. Awaiting the DFU_CLRSTATUS request.

Status Value Description

bmRequestType bRequest wValue wIndex wLength Data

0010 0001b DFU_CLRSTATUS (4) Zero Interface (4) 0 None
 7
7618C–AVR–07/08

4.5.3 Device State
The state reported is the current state of the device up to transmission of the response. The val-
ues specified in the bState field are identical to those reported in DFU_GETSTATUS.

4.5.4 DFU_ABORT request
The DFU_ABORT request forces the device to exit from any other state and return to the
DFU_IDLE state. The device sets the OK status on receipt of this request. For more information,
see the corresponding state transition summary.

4.6 Programming the Flash or EEPROM Data
The firmware image is downloaded via control-write transfers initiated by the DFU_DNLOAD
class-specific request. The host sends between bMaxPacketSize0 and wTransferSize bytes to
the device in a control-write transfer. Following each downloaded block, the host solicits the
device status with the DFU_GETSTATUS request.

As described in the USB DFU Specification, "Firmware images for specific devices are, by defi-
nition, vendor specific. It is therefore required that target addresses, record sizes, and all other
information relative to supporting an upgrade are encapsulated within the firmware image file. It
is the responsibility of the device manufacturer and the firmware developer to ensure that their
devices can process these encapsulated data. With the exception of the DFU file suffix, the con-
tent of the firmware image file is irrelevant to the host."

Firmware image:

• 32 bytes: Command
• X bytes: X is the number of byte (00h) added before the first significant byte of the firmware.

The X number is calculated to align the beginning of the firmware with the flash page. X =
start_address [32]. For example, if the start address is 00AFh (175d), X = 175 [32] = 15.

• The firmware
• The DFU Suffix on 16 Bytes.

Table 4-7. DFU File Suffix

bmRequestType bRequest wValue wIndex wLength Data

1010 0001b DFU_GETSTATE (5) Zero Interface (4) 1 State

bmRequestType bRequest wValue wIndex wLength Data

1010 0001b DFU_ABORT (6) Zero Interface (4) 0 None

Offset Field Size Value Description

-0 dwCRC 4 Number The CRC of the entire file, excluding dwCRC

-4 bLength 1 16 The length of this DFU suffix including dwCRC

-5 ucDfuSignature 3
5 : 44h
6 : 46h
7 : 55h

The unique DFU signature field

-8 bcdDFU 2
BCD

0100h
DFU specification number
 8
7618C–AVR–07/08

4.6.1 Request From Host

4.6.1.1 Write Command

The write command is 6 bytes long. In order to meet with the USB specification of the Control
type transfers, the write command is completed with 26 (= 32 - 6) non-significant bytes. The total
length of the command is then 32 bytes, which is the length of the Default Control Endpoint.

4.6.1.2 Firmware
The firmware can now be downloaded to the device. In order to be in accordance with the Flash
page size (128 bytes), X non-significant bytes are added before the first byte to program. The X
number is calculated to align the beginning of the firmware with the Flash page. X =
start_address [32]. For example, if the start address is 00AFh (175d), X = 175 [32] = 15.

4.6.1.3 DFU Suffix
The DFU suffix of 16 bytes is added just after the last byte to program. This suffix is reserved for
future use.

-10 idVendor 2 ID The vendor ID associated with this file. Either FFFFh or
must match device’s vendor ID

-12 idProduct 2 ID The product ID associated with this file. Either FFFFh or
must match the device’s product ID

-14 bcdDevice 2 BCD
The release number of the device associated with this
file. Either FFFFh or a BCD firmware release or version
number

Offset Field Size Value Description

bmRequestType bRequest wValue wIndex wLength Data

0010 0001b DFU_DNLOAD (1) wBlock Interface (4) Length Firmware

Command Identifier data[0] data[1] data[2] data[3] data[4] Description

Id_prog_start
01h

00h
start_address end_address

Init FLASH programming

01h Init EEPROM programming
 9
7618C–AVR–07/08

Figure 4-1. Example of Firmware Download Zero Length DFU_DNLOAD Request

The Host sends a DFU_DNLOAD request with Zero Length Packet (ZLP) to indicate that it has
completed transferring the firmware image file. This is the final payload packet of a download
operation.

4.6.1.4 Answers from Bootloader
After each program request, the Host can request the device state and status by sending a
DFU_GETSTATUS message.
If the device status indicates an error, the host must send a DFU_CLRSTATUS request to the
device.

4.7 Reading the Flash or EEPROM Data
The flow described below allows the user to read data in the Flash memory or in the EEPROM
data memory. A blank check command on the Flash memory is possible with this flow.

This operation is performed in 2 steps:

• DFU_DNLOAD request with the read command (6 bytes)
• DFU_UPLOAD request which correspond to the previous command.

OUT Prog_Start + (EP0 fifo length - 6) x 00h

SETUP DFU_DNLOAD

OUT X offset bytes + Firmware Packet 1

OUT Firmware Packet 2

OUT Firmware Packet n + DFU suffix

IN ZLP
 10
7618C–AVR–07/08

4.7.1 First Request from Host
The Host sends a DFU Download request with a Display command in the data field.

4.7.2 Second Request from Host
The Host sends a DFU Upload request.

4.7.3 Answers from the Device
The device sends to the Host the firmware from the specified start address to the specified end
address.

Command Identifier data[0] data[1] data[2] data[3] data[4] Description

Id_display_data
03h

00h

start_address end_address

Display FLASH Data

01h Blank Check in FLASH

02h Display EEPROM Data

OUT Display_Data (6 bytes)

SETUP DFU_DNLOAD

IN ZLP

IN Firmware Packet 1

IN Firmware Packet 2

IN Firmware Packet n

OUT ZLP

SETUP DFU_UPLOAD
 11
7618C–AVR–07/08

4.7.4 Answers from the Device to a Blank Check Command
The Host controller sends a GET_STATUS request to the device. Once internal blank check has
been completed, the device sends its status.

• If the device status is “OK”:
the device memory is then blank and the device waits for the next Host request.

• If the device status is “errCHECK_ERASED”:
the device memory is not blank. The device waits for an DFU_UPLOAD request to send the
first address where the byte is not 0xFF.

4.8 Reading Configuration Information or Manufacturer Information
The flow described hereafter allows the user to read the configuration or manufacturer
information.

4.8.1 Requests From Host

To start the programming operation, the Host sends DFU_DNLOAD request with the Read com-
mand in the data field (2 bytes).

4.8.2 Answers from Bootloader
The device has two possible answers to a DFU_GETSTATUS request:

• If the chip is protected from program access, an “err_VENDOR” status is returned to the
Host.

• Otherwise, the device status is “OK“. The Host can send a DFU_UPLOAD request to the
device in order to get the value of the requested field.

Command Identifier data[0] data[1] data[2] data[3] data[4] Description

Id_read_command
05h

00h

00h Read Bootloader Version

01h Read Device boot ID1

02h Read Device boot ID2

01h

30h Read Manufacturer Code

31h Read Family Code

60h Read Product Name

61h Read Product Revision

OUT Read_command (2 bytes)

SETUP DFU_DNLOAD

IN ZLP
 12
7618C–AVR–07/08

4.9 Erasing the Flash
The flow described below allows the user to erase the Flash memory.

The Full Chip erase command erases the whole Flash.

4.9.1 Request from Host

To start the erasing operation, the Host sends a DFU_DNLOAD request with a Write Command
in the data field (2 bytes).

4.9.2 Answers from Bootloader
The device has two possible answers to a DFU_GETSTATUS request:

• If the chip is protected from program access, an “err_WRITE” status is returned to the Host.
• Otherwise, the device status is “OK“.

4.10 Starting the Application
The flow described below allows to start the application directly from the bootloader upon a spe-
cific command reception.

Two options are possible:
• Start the application with an internal hardware reset using watchdog.

When the device receives this command the watchdog is enabled and the bootloader enters
a waiting loop until the watchdog resets the device.

• Start the application without reset.
A jump at the address 0000h is used to start the application without reset.

To start the application, the Host sends a DFU_DNLOAD request with the specified application
start type in the data field (3 or 5 bytes).

This request is immediately followed by a second DFU_DNLOAD request with no data field to
start the application with one of the 2 options.

IN Byte value (1 byte)

SETUP DFU_UPLOAD

OUT ZLP

Command Identifier data[0] data[1] data[2] data[3] data[4] Description

Id_write_command
04h

00h FFh Full chip Erase (bits at FFh)
 13
7618C–AVR–07/08

Important note:
The bootloader performs a watchdog reset to generate the “hardware reset” that allows to exe-
cute the application section. After a watchdog reset occurs, the AVR watchdog is still running,
thus the application should take care to disable watchdog at program start-up (otherwise the
application that does not manage the hardware watchdog will run in an infinite reset loop).

4.11 Request From Host

4.12 Answer from Bootloader
No answer is returned by the device.

5. Security
When the USB bootloader connection is initiated, the bootloader automatically enters a
read/write software security mode (independent of the product lock bits settings). This allows to
protect the on-chip flash content from read/write access over the USB interface. Thus the only
DFU command allowed after a USB bootloader connection is a “Full Chip Erase” command.

After this “Full Chip Erase” has been received and properly executed, all DFU commands are
allowed, and thus the on-chip flash can be reprogrammed and verified.

Command Identifier data[0] data[1] data[2] data[3] data[4] Description

Id_write_command
04h 03h

00h Hardware reset

01h address LJMP address

IN Jump O

SETUP DFU_UPLOAD

OUT ZLP

SETUP DFU_UPLOAD

ption (3 or 5 Bytes)
 14
7618C–AVR–07/08

6. Accessing the Low level Flash Drivers
The AT90USB USB bootloader is located in the boot section of the on-chip flash memory, mean-
while the bootloader section is the unique memory location allowed to execute on-chip flash
memory write operations (SPM instruction is decoded only in this section).

Thus applications which require on-chip flash write access can perform calls to specific entry
points located in the USB bootloader.

The USB bootloader provides several Application Programming Interfaces (API) that allows the
application to access low level flash drivers located in the boot section. These APIs allow the fol-
lowing operations:

• Page Erase
• Page Write
• Load word in the temporary page buffer

Figure 6-1. USB bootloader API calls

Application section

Boot section

API entry points

USB Bootloader

Low level flash drivers

On-Chip flash Request:
"Page Erase"
"Page Write"
"Load Word"

Low Level
Flash Operations

Target Page modified

Application
 15
7618C–AVR–07/08

The API are located at absolute addresses in the USB bootloader firmware and accept specific
registers values as parameters. These parameters are compatible with a C compiler calling con-
vention and thus can be called directly with function pointer declared as in the example below:

The full assembly code for the flash API drivers is given in “Appendix-B” on page 20.

C Code Example

#if (FLASH_END==0x1FFFF) //128K bytes parts
 #define LAST_BOOT_ENTRY 0xFFFE
#elif (FLASH_END==0xFFFF)//64K bytes parts
 #define LAST_BOOT_ENTRY 0x7FFE
#else
 #error You must define FLASH_END in bytes.
#endif

// These functions pointers are used to call functions entry points in bootloader

void (*boot_flash_page_erase_and_write)(unsigned long adr)=(void (*)(unsigned
long))(LAST_BOOT_ENTRY-12);
U8 (*boot_flash_read_sig) (unsigned long adr)=(U8 (*)(unsigned
long))(LAST_BOOT_ENTRY-10);
U8 (*boot_flash_read_fuse) (unsigned long adr)=(U8 (*)(unsigned
long))(LAST_BOOT_ENTRY-8);
void (*boot_flash_fill_temp_buffer) (unsigned int data,unsigned int adr)=(void
(*)(unsigned int, unsigned int))(LAST_BOOT_ENTRY-6);
void (*boot_flash_prg_page) (unsigned long adr)=(void (*)(unsigned
long))(LAST_BOOT_ENTRY-4);
void (*boot_flash_page_erase) (unsigned long adr)=(void (*)(unsigned
long))(LAST_BOOT_ENTRY-2);
void (*boot_lock_wr_bits) (unsigned char val)=(void (*)(unsigned
char))(LAST_BOOT_ENTRY);

// This function writes 0x55AA @ 0x1200 in the on-flash calling flash drivers located
in USB bootloader
void basic_flash_access(void)
{

unsigned long address;
unsigned int temp16;
temp16=0x55AA;
address=0x12000;
(*boot_flash_fill_temp_buffer)(temp16,address);
(*boot_flash_page_erase)(address);
(*boot_flash_prg_page)(address);

}

 16
7618C–AVR–07/08

7. Using the USB bootloader for In System Programming

Flip software is the PC side application used to communicate with the USB bootloader (Flip is
available for free on the Atmel website).

For detailed instructions about using Flip and USB bootloader, please refer to AVR282: “USB
Firmware Upgrade for AT90USB” (doc 7769).
 17
7618C–AVR–07/08

8. Bootloader History
The following table shows the different bootloader revision and associated changes.

Table 8-1. USB Bootloader History

9. Appendix-A

Product Bootloader Revision Changes

AT90USB1287
AT90USB1286
AT90USB647
AT90USB646

1.0.1 Initial Revision

AT90USB162
AT90USB82

1.0.0 Initial Revision

1.0.1 Allow to use 16MHz cristal with 3.3V power supply and
CKDIV8 fuse.

1.0.5 Improved USB autobaud process

ATmega32U4
ATmega16U4

1.0.0 Initial Revision

Table 9-1. Summary of Frames from Host
Command Identifier data[0] data[1] data[2] data[3] data[4] Description

Id_prog_start
01h

00h
start_address end_address

Init FLASH programming

01h Init EEPROM programming

Id_display_data
03h

00h

start_address end_address

Display FLASH Data

01h Blank Check in FLASH

02h Display EEPROM Data

Id_write_command
04h

00h FFh Full chip Erase (bits at FFh)

03h
00h Hardware reset

01h address LJMP address

Id_read_command
05h

00h

00h Read Bootloader Version

01h Read Device boot ID1

02h Read Device boot ID2

01h 30h Read Manufacturer Code

31h Read Family Code

60h Read Product Name

61h Read Product Revision

Id_change _base
_address
06h

03h 00 “PP” Select “PP” 64kBytes flash
page number
 18
7618C–AVR–07/08

Table 9-2. DFU Class-specific Requests
bmRequestType bRequest wValue wIndex wLength Data

0010 0001b DFU_DETACH (0) wTimeout Interface (4) Zero none

0010 0001b DFU_DNLOAD (1) wBlock Interface (4) Length Firmware

1010 0001b DFU_UPLOAD (2) wBlock Interface (4) Length Firmware

1010 0001b DFU_GETSTATUS (3) Zero Interface (4) 6 Status

0010 0001b DFU_CLRSTATUS (4) Zero Interface (4) Zero none

1010 0001b DFU_GETSTATE (5) Zero Interface (4) 1 State

0010 0001b DFU_ABORT (6) Zero Interface (4) Zero none
 19
7618C–AVR–07/08

10. Appendix-B
;*A**
**

; $RCSfile: flash_boot_drv.s90,v $

;--
--

; Copyright (c) Atmel.

;--
--

; RELEASE: $Name: $

; REVISION: $Revision: 1.7 $

; FILE_CVSID: $Id: flash_boot_drv.s90,v 1.7 2005/10/03 15:50:12 $

;--
--

; PURPOSE:

; This file contains the low level driver for the flash access

;**
**

NAMEflash_drv(16)

;_____ I N C L U D E S
__

#define ASM_INCLUDE

#include "config.h"

;**
**

; This is the absolute table entry points for low level flash drivers

; This table defines the entry points that can be called

; from the application section to perform on-chip flash operations:

;

; entry_flash_page_erase_and_write:

; R18:17:R16: The byte address of the page

;

; entry_flash_fill_temp_buffer:

; data16 : R16/R17: word to load in the temporary buffer.

; address: R18/R19: address of the word in the temp. buffer.

;

; entry_flash_prg_page:

; R18:17:R16: The byte address of the page

;

; entry_flash_page_erase:

; R18:17:R16: The byte address of the page

;

;**
**

ASEG FLASH_END-0x0001B

entry_flash_page_erase_and_write:
 20
7618C–AVR–07/08

 JMP flash_page_erase_and_write

entry_flash_read_sig:

 JMP flash_read_sig

entry_flash_read_fuse:

 JMP flash_read_fuse

entry_flash_fill_temp_buffer:

 JMP flash_fill_temp_buffer

entry_flash_prg_page:

 JMP flash_prg_page

entry_flash_page_erase:

 JMP flash_page_erase_public

entry_lock_wr_bits:

 JMP lock_wr_bits

RSEGBOOT

;*F**
**

; NAME: flash_page_erase_and_write

;--
--

; PARAMS: R18:17:R16: The byte address of the page

;--
--

; PURPOSE: This function can be called for the user appplication

; This function performs an erase operation of the selected target page and

; the launch the prog sequence of the same target page.

; This function allows to save the 256 bytes software temporary buffer in

; the application section

;**
**

flash_page_erase_and_write:

 PUSH R18

 RCALL flash_page_erase

 POP R18

 RCALL flash_prg_page

 RET

;*F**
**

; NAME: flash_prg_page

;--
--

; PARAMS: R18:17:R16: The byte address of the page

;--
--

; PURPOSE: Launch the prog sequence of the target page
 21
7618C–AVR–07/08

;**
**

flash_prg_page:

 RCALL WAIT_SPMEN ;Wait for SPMEN flag cleared

 MOV R31,R17

 MOV R30,R16 ;move adress to z pointer (R31=ZH R30=ZL)

 OUT RAMPZ, R18

 LDI R20,$05 ;(1<<PGWRT) + (1<<SPMEN))

 OUT SPMCSR,R20; argument 2 decides function (r18)

 SPM ;Store program memory

 RCALL WAIT_SPMEN ;Wait for SPMEN flag cleared

 RCALL flash_rww_enable

 RET

;*F**
**

; NAME: flash_page_erase

;--
--

; PARAMS: R18:17:R16: The byte address of the page

;--
--

; PURPOSE: Launch the erase sequence of the target page

;--
--

; NOTE: This function does nt set the RWWSE bit after erase. Thus it does
not

; erase the hardware temporary temp buffer.

; This function is for bootloader usage

;--
--

; REQUIREMENTS:

;**
**

 flash_page_erase:

 RCALL WAIT_SPMEN ;Wait for SPMEN flag cleared

 MOV R31,R17

 MOV R30,R16 ;move adress to z pointer (R31=ZH R30=ZL)

 OUT RAMPZ, R18

 LDI R20,$03 ;(1<<PGERS) + (1<<SPMEN)))

 OUT SPMCSR, R20; argument 2 decides function (r18)

 SPM ;Store program memory

 RCALL WAIT_SPMEN ;Wait for SPMEN flag cleared

 ;RCALL flash_rww_enable CAUTION DO NOT ACTIVATE HERE or

 ; you will loose the entire page buffer content !!!

 RET
 22
7618C–AVR–07/08

;*F**
**

; NAME: flash_page_erase_public

;--
--

; PARAMS: R18:17:R16: The byte address of the page

;--
--

; PURPOSE: Launch the erase sequence of the target page

;--
--

; NOTE: !!!!This function set the RWWSE bit after erase. Thus it

; erase the hardware temporary temp buffer after page erase

;**
**

flash_page_erase_public:

 RCALL WAIT_SPMEN ;Wait for SPMEN flag cleared

 MOV R31,R17

 MOV R30,R16 ;move adress to z pointer (R31=ZH R30=ZL)

 OUT RAMPZ, R18

 LDI R20,$03 ;(1<<PGERS) + (1<<SPMEN)))

 OUTSPMCSR, R20; argument 2 decides function (r18)

 SPM ;Store program memory

 RCALL WAIT_SPMEN ;Wait for SPMEN flag cleared

 RCALL flash_rww_enable

 RET

;*F**
**

; NAME: flash_rww_enable

;--
--

; PARAMS: none

;--
--

; PURPOSE: Set RWSE bit. It allows to execute code in the application
section

; after a flash prog (erase or write page)

;**
**

 flash_rww_enable:

 RCALL WAIT_SPMEN ;Wait for SPMEN flag cleared

 LDI R20,$11 ;(1<<WWSRE) + (1<<SPMEN)))

 OUT SPMCSR, R20 ; argument 2 decides function (r18)

 SPM ;Store program memory

 RJMP WAIT_SPMEN ;Wait for SPMEN flag cleared
 23
7618C–AVR–07/08

;*F**
**

; NAME: flash_read_sig

;--
--

; PARAMS:

; Return: R16: signature value

;--
--

; PURPOSE: Read harware signature byte. THe byte is selected trought the
addr

; passed as argument (see product data sheet)

;**
**

flash_read_sig:

 RCALL WAIT_SPMEN ;Wait for SPMEN flag cleared

 MOV R31,R17

 MOV R30,R16 ;move adress to z pointer (R31=ZH R30=ZL)

 OUT RAMPZ, R18

 LDI R20,$21 ;(1<<SPMEN) | (1<<SIGRD))

 OUT SPMCSR, R20; argument 2 decides function (r18)

 LPM ;Store program memory

 MOV R16, R0 ;Store return value (1byte->R16 register)

 RJMP WAIT_SPMEN ;Wait for SPMEN flag cleared

;*F**
**

; NAME: flash_read_fuse

;--
--

; Return: R16: fuse value

;--
--

; PURPOSE: Read fuse byte. The fuse byte is elected through the address
passed

; as argument (See product datasheet for addr value)

;**
**

flash_read_fuse:

 RCALL WAIT_SPMEN ;Wait for SPMEN flag cleared

 MOV R31,R17

 MOV R30,R16 ;move adress to z pointer (R31=ZH R30=ZL)

 OUT RAMPZ, R18

 LDI R20,$09 ;(1<<SPMEN) | (1<<BLBSET))

 OUT SPMCSR, R20; argument 2 decides function (r18)

 LPM ;Store program memory

 MOV R16, R0 ;Store return value (1byte->R16 register)
 24
7618C–AVR–07/08

 RJMP WAIT_SPMEN ;Wait for SPMEN flag cleared

/*F**
**

* NAME: flash_fill_temp_buffer

*--
--

* PARAMS:

* data16 : R16/R17: word to load in the temporary buffer.

* address: R18/R19: address of the word.

* return: none

*--
--

* PURPOSE:

* This function allows to load a word in the temporary flash buffer.

*--
--

* EXAMPLE:

* fill_temp_buffer(data16, address);

*--
--

* NOTE:

* the first paramater used the registers R16, R17

* The second parameter used the registers R18, R19

**/

flash_fill_temp_buffer:

 MOV R31,R19 ;move adress to z pointer (R31=ZH R30=ZL)

 MOV R30,R18

 MOV R0,R17 ;move data16 to reg 0 and 1

 MOV R1,R16

 LDI R20,(1<<SPMEN)

 OUT SPMCSR, R20; r18 decides function

 SPM ; Store program memory

 RJMP WAIT_SPMEN ; Wait for SPMEN flag cleared

;*F**
**

; NAME: lock_wr_bits

;--
--

; PARAMS: R16: value to write

;--
--

; PURPOSE:

;**
**

lock_wr_bits:
 25
7618C–AVR–07/08

 RCALL WAIT_SPMEN ; Wait for SPMEN flag cleared

 MOV R0,R16

 LDI R18,((1<<BLBSET)|(1<<SPMEN))

 OUT SPMCSR, R18 ; r18 decides function

 SPM ; write lockbits

 RJMP WAIT_SPMEN ; Wait for SPMEN flag cleared

;*F**
**

; NAME: wait_spmen

;--
--

; PARAMS: none

;--
--

; PURPOSE: Performs an active wait on SPME flag

;**
**

WAIT_SPMEN:

 MOVR0, R18

 INR18, SPMCSR ; get SPMCR into r18

 SBRC R18,SPMEN

 RJMP WAIT_SPMEN ; Wait for SPMEN flag cleared

 MOVR18, R0

 RET

END
 26
7618C–AVR–07/08

11. Document Revision History

11.1 7618B 03/08
1. Removed references to DFU Functional Descriptor throughout the document.

11.2 7618C 07/08
1. Update for AT90USB162/82, AT90USB64x, ATmega32U4 and ATmega16U4.
2. Update bootloader revision history.
 27
7618C–AVR–07/08

Headquarters International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Atmel Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Product Contact

Web Site
www.atmel.com

Technical Support
avr@atmel.com

Sales Contact
www.atmel.com/contacts

Literature Requests
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.

© 2008 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, and others are registered trademarks or trademarks of
Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.
7618C–AVR–07/08

	1. Description
	2. Bootloader Environment
	3. Bootloader Activation
	4. Protocol
	4.1 Device Firmware Upgrade Introduction
	4.2 DFU Specific Requests
	4.3 DFU Descriptors Set
	4.3.1 DFU Device Descriptor
	4.3.2 DFU Configuration Descriptor
	4.3.2.1 DFU Interface Descriptor

	4.4 Commands Description
	4.5 Device Status
	4.5.1 Get Status
	4.5.2 Clear Status
	4.5.3 Device State
	4.5.4 DFU_ABORT request

	4.6 Programming the Flash or EEPROM Data
	4.6.1 Request From Host
	4.6.1.1 Write Command
	4.6.1.2 Firmware
	4.6.1.3 DFU Suffix
	4.6.1.4 Answers from Bootloader

	4.7 Reading the Flash or EEPROM Data
	4.7.1 First Request from Host
	4.7.2 Second Request from Host
	4.7.3 Answers from the Device
	4.7.4 Answers from the Device to a Blank Check Command

	4.8 Reading Configuration Information or Manufacturer Information
	4.8.1 Requests From Host
	4.8.2 Answers from Bootloader

	4.9 Erasing the Flash
	4.9.1 Request from Host
	4.9.2 Answers from Bootloader

	4.10 Starting the Application
	4.11 Request From Host
	4.12 Answer from Bootloader

	5. Security
	6. Accessing the Low level Flash Drivers
	7. Using the USB bootloader for In System Programming
	8. Bootloader History
	9. Appendix-A
	10. Appendix-B
	11. Document Revision History
	11.1 7618B 03/08
	11.2 7618C 07/08

