FDS6892AZ # **Dual N-Channel Logic Level PWM Optimized PowerTrench® MOSFET** ### **General Description** These N-Channel Logic Level MOSFETs are produced using Fairchild Semiconductor's advanced PowerTrench process that has been especially tailored to minimize the on-state resistance and yet maintain superior switching performance. These devices are well suited for low voltage and battery powered applications where low in-line power loss and fast switching are required. ### **Features** - 7.5 A, 20 V. $R_{DS(ON)} = 18 \ m\Omega \ @ \ V_{GS} = 4.5 \ V$ $R_{DS(ON)} = 24 \ m\Omega \ @ \ V_{GS} = 2.5 \ V$ - Low gate charge (12 nC typical) - High performance trench technology for extremely low R_{DS(ON)} - High power and current handling capability ### Absolute Maximum Ratings T_A=25°C unless otherwise noted | Symbol | Parameter | | Ratings | Units | | |-----------------------------------|--|-----------|-------------|-------|--| | V _{DSS} | Drain-Source Voltage | | 20 | V | | | V _{GSS} | Gate-Source Voltage | | ± 12 | V | | | I _D | Drain Current - Continuous | (Note 1a) | 7.5 | А | | | | – Pulsed | | 30 | | | | P _D | Power Dissipation for Dual Operation | | 2 | W | | | | Power Dissipation for Single Operation | (Note 1a) | 1.6 | | | | | | (Note 1b) | 1 | | | | | | (Note 1c) | 0.9 | | | | T _J , T _{STG} | Operating and Storage Junction Temperature Range | | -55 to +150 | °C | | ### **Thermal Characteristics** | $R_{\theta JA}$ | Thermal Resistance, Junction-to-Ambient | (Note 1a) | 78 | °C/W | |-----------------|---|-----------|----|------| | $R_{\theta JC}$ | Thermal Resistance, Junction-to-Case | (Note 1) | 40 | °C/W | **Package Marking and Ordering Information** | Device Marking | Device | Reel Size | Tape width | Quantity | |----------------|-----------|-----------|------------|------------| | FDS6892AZ | FDS6892AZ | 13" | 12mm | 2500 units | | Symbol | Parameter | Test Conditions | Min | Тур | Max | Units | |---|---|---|-----|----------------|----------------|-------| | Off Char | racteristics | | | I | I | l | | BV _{DSS} | Drain-Source Breakdown Voltage | $V_{GS} = 0 \text{ V}, \qquad I_{D} = 250 \mu\text{A}$ | 20 | | | V | | ΔBV _{DSS}
ΔT _J | Breakdown Voltage Temperature Coefficient | I_D = 250 μ A, Referenced to 25°C | | 14 | | mV/°C | | I _{DSS} | Zero Gate Voltage Drain Current | $V_{DS} = 16 \text{ V}, V_{GS} = 0 \text{ V}$
$V_{DS} = 16 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55^{\circ}\text{C}$ | | | 1
10 | μА | | I _{GSSF} | Gate-Body Leakage, Forward | $V_{GS} = 12 \text{ V}, V_{DS} = 0 \text{ V}$ | | | 10 | μΑ | | I _{GSSR} | Gate-Body Leakage, Reverse | $V_{GS} = -12 \text{ V}, V_{DS} = 0 \text{ V}$ | | | -10 | μΑ | | On Char | acteristics (Note 2) | | | | | | | V _{GS(th)} | Gate Threshold Voltage | $V_{DS} = V_{GS}, I_{D} = 250 \mu\text{A}$ | 0.6 | 1.0 | 1.5 | V | | ΔV _{GS(th)}
ΔT _J | Gate Threshold Voltage
Temperature Coefficient | $I_D = 250 \mu\text{A}$, Referenced to 25°C | | -3 | | mV/°C | | R _{DS(on)} | Static Drain–Source
On–Resistance | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | 13
18
19 | 18
24
28 | mΩ | | I _{D(on)} | On-State Drain Current | $V_{GS} = 4.5V$, $V_{DS} = 5 V$ | 15 | | | Α | | g _{FS} | Forward Transconductance | $V_{DS} = 5 \text{ V}, \qquad I_{D} = 7.5 \text{ A}$ | | 36 | | S | | Dynamic | Characteristics | | | | | | | C _{iss} | Input Capacitance | $V_{DS} = 10 \text{ V}, V_{GS} = 0 \text{ V},$ | | 1286 | | pF | | C _{oss} | Output Capacitance | f = 1.0 MHz | | 305 | | pF | | C _{rss} | Reverse Transfer Capacitance | | | 161 | | pF | | Switchir | ng Characteristics (Note 2) | | | • | • | | | t _{d(on)} | Turn-On Delay Time | $V_{DD} = 10 \text{ V}, I_D = 1 \text{ A},$ | | 10 | 20 | ns | | t _r | Turn-On Rise Time | $V_{GS} = 4.5 \text{ V}, R_{GEN} = 6 \Omega$ | | 14 | 25 | ns | | t _{d(off)} | Turn-Off Delay Time | | | 25 | 40 | ns | | t _f | Turn-Off Fall Time | | | 8 | 16 | ns | | Q _g | Total Gate Charge | $V_{DS} = 10 \text{ V}, I_{D} = 7.5 \text{ A},$ | | 12 | 17 | nC | | Q _{gs} | Gate-Source Charge | V _{GS} = 4.5 V | | 2.6 | | nC | | Q_{gd} | Gate-Drain Charge | <u> </u> | | 3 | | nC | | Drain-S | ource Diode Characteristics | and Maximum Ratings | | | | | | Is | Maximum Continuous Drain-Source | | | | 1.3 | Α | | V _{SD} | Drain–Source Diode Forward
Voltage | $V_{GS} = 0 \text{ V}, I_S = 1.3 \text{ A} \text{(Note 2)}$ | | 0.7 | 1.2 | V | ### Notes: R_{8JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{8JC} is guaranteed by design while R_{8CA} is determined by the user's board design. a) 78°C/W when mounted on a 0.5in² pad of 2 oz copper b) 125°C/W when mounted on a 0.02 in² pad of 2 oz copper c) 135°C/W when mounted on a minimum mounting pad. Scale 1 : 1 on letter size paper - 2. Pulse Test: Pulse Width < 300 μ s, Duty Cycle < 2.0% - 3. The diode connected between the gate and source serves only as protection against ESD. No gate overvoltage rating is implied. ## **Typical Characteristics** Figure 1. On-Region Characteristics. Figure 3. On-Resistance Variation with Temperature. Figure 5. Transfer Characteristics. Figure 2. On-Resistance Variation with Drain Current and Gate Voltage. Figure 4. On-Resistance Variation with Gate-to-Source Voltage. Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature. ## **Typical Characteristics** Figure 7. Gate Charge Characteristics. Figure 9. Maximum Safe Operating Area. Figure 10. Single Pulse Maximum Power Dissipation. Figure 11. Transient Thermal Response Curve. Thermal characterization performed using the conditions described in Note 1c. Transient thermal response will change depending on the circuit board design. #### **TRADEMARKS** The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. SMART START™ VCX^{TM} FAST ® OPTOLOGIC™ STAR*POWER™ FASTr™ Bottomless™ OPTOPLANAR™ Stealth™ CoolFET™ FRFET™ PACMAN™ SuperSOT™-3 CROSSVOLT™ GlobalOptoisolator™ POP™ SuperSOT™-6 DenseTrench™ GTO™ Power247™ $HiSeC^{TM}$ SuperSOT™-8 $Power Trench^{\, @}$ DOME™ SyncFET™ EcoSPARK™ ISOPLANAR™ QFET™ TinyLogic™ E²CMOSTM LittleFET™ OS^{TM} TruTranslation™ STAR*POWER is used under license #### DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. #### LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. ### PRODUCT STATUS DEFINITIONS ### **Definition of Terms** | Datasheet Identification | Product Status | Definition | |--------------------------|---------------------------|---| | Advance Information | Formative or
In Design | This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. | | Preliminary | First Production | This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. | | No Identification Needed | Full Production | This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. | | Obsolete | Not In Production | This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only. | Rev. H4