

DRF1400

500V, 30A, 30MHz

MOSFET Half Bridge Hybrid

The DRF1400 is a half bridge hybrid containing two high power gate drivers and two power MOSFETs. It was designed to provide the system designer increased flexibility, higher performance and lowered cost over a non-integrated solution. This low parasitic approach, coupled with the Schmitt trigger input, Kelvin signal ground, anti-Ring function Invert and Non-invert select pin provide improved stability and control in Kilowatt to Multi-Kilowatt, High Frequency ISM applications.

FEATURES

Hysteresis

Switching Frequency: DC TO 30MHz

• Single Power Supply (Per Section)

1V CMOS Schmitt Trigger Input 1V

• Inverting Non-Inverting Select

· Low Pulse Width Distortion

- B_{Vds} = 500V
- I_{ds} = 30A avg. Per-section
 - R_{ds(on)} ≤ .24 Ohm
 - P_D = 550W Per-section

Switching Speed 3-4ns

RoHS Compliant

TYPICAL APPLICATIONS

- Class D Half Bridge RF Generetors
- Switch Mode Power Amplifiers
- HV Pulse Generators
- Ultrasound Transducer Drivers
- Acoustic Optical Modulators

Driver Absolute Maximum Ratings

Symbol	Parameter	Ratings	Unit
V _{DD}	Supply Voltage	15	V
IN, FN	Input Single Voltages	7 to +5.5	v
I _{о РК}	Output Current Peak	8	А
T _{JMAX}	Operating Temperature	175	°C

Driver Specifications

Symbol	Parameter	Min	Тур	Мах	Unit
$V_{_{DD}}$	Supply Voltage	8	12	15	V
IN	Input Voltage	3		5	V
IN _(R)	Input Voltage Rising Edge		3		
IN _(F)	Input Voltage Falling Edge		3		ns
I _{ddq}	Quiescent Current		2		mA
I _o	Output Current		8		А
C _{oss}	Output Capacitance		2500		
C _{iss}	Input Capacitance		3		рF
R _{IN}	Input Parallel Resistance		1		mΩ
V _{T(ON)}	Input, Low to High Out	0.8		1.1	v
V _{T(OFF)}	Input, High to Low Out	1.9		2.2	v
T	Time Delay (throughput)		38		ns
t,	Rise Time		5		
t _r	Fall Time		5		ns
T _D	Prop. Delay		35		1

MOSFET Absolute Maximum Ratings (Per-Section)

Symbol	Symbol Parameter		Тур	Max	Unit
BV _{DSS} Drain Source Voltage		500			V
ا _D	Continuous Drain Current T _{HS} = 25°C			30	А
R _{DS(on)}	Drain-Source On State Resistance		0.24		Ω

Dynamic Characteristics (Per-Section)

Symbol	Parameter	Min	Тур	Max	Unit
C _{iss}	Input Capacitance		1800		
C _{oss}	Output Capacitance		335		pF
C _{rss}	Reverse Transfer Capacitance		75		

Thermal Characteristics (Total Package)

Symbol	Parameter	Ratings	Unit	
R _{θJC}	Junction to Case Thermal Resistance	.06	°C/W	
R _{ØJHS}	Junction to Heat Sink Thermal Resistance	.134	-C/w	
T _{JSTG}	Storage Junction Temperature	-55 to 150	°C	
P _D	Maximum Power Dissipation @ T _{SINK} = 25°C	1.1		
P _{DC}	Total Power Dissipation @ $T_c = 25^{\circ}C$	2.5	KW	

	Section A and B Output Switching Performance				
Symbol	Characteristic	Min	Тур	Max	Тур
T _{on}	Leading Edge 10% to 90%	2	3	4	
	Trailing Edge 10% to 90%	45	TBD	49	
T _{DLY(ON)}	Total Throughput Delay Time, ON	47	TBD	45	1
T _{DLY(OFF)}	Total Throughput Delay Time, OFF	49	50	51	ns
$\Delta T_{\rm DLY(ON)}$	Delta T _{on} Delay between Section A and B	-0.5	0	1.5	
$\Delta T_{\rm DLY(OFF)}$	Delta T _{OFF} Delay between Section A and B	0	0.6	1.3	

Microsemi reserves the right to change, without notice, the specifications and information contained herein.

Figure 1, DRF1400 Test Circuit Diagram

The DRF1400 is configured as a Half Bridge Hybrid incorporating two independent channels consisting of a driver, a high voltage MOSFET and by-pass capacitors. The function of the by-pass capacitors C1 and C2 is to reduce the internal parasitic loop inductance. This coupled with the tight geometry of the hybrid allows optimal gate drive to the MOSFET. This low parasitic approach coupled with the Schmitt trigger input (IN), Kelvin signal ground (SG) and the Anti-Ring function; provide improved stability and control in Kilowatt to Multi-Kilowatt high frequency applications. The IN pin should be referenced to the Kelvin Ground (SG) and is applied to a Schmitt Trigger. The SG pin is a Kelvin return for the IN pin only. The signal is then applied to the intermediate drivers and level shifters; this section contains proprietary circuitry designed specifically for ring abatement. To further increase the utility of the device the driver die and the MOSFET die are adjacent die selected. This provides a very close match in the turn on and propagation delays.

DRF1400

None of the inputs to U1 or U2 of the DRF1400 are isolated for direct connection to a ground referenced power supply or control circuitry. **Isolation appropriate to the application is the responsibility of the end user.** It is imperative that high output currents be restricted to the Drain (17), Source (15) Output (16) and the C3 Bypass (18, 19) connection pins by design. See DRF100 for more information on Driver IC used in the device.

The Function (FN, pin 3 or pin 9) is the invert or non-invert select Pin, it is Internally held high.

Truth Table * Referenced to SG				
FN (pin 3) IN (pin 4) MOSFET				
HIGH	HIGH	ON		
HIGH	LOW	OFF		
LOW	HIGH	OFF		
LOW	LOW	ON		

Truth Table * Referenced to SG				
FN (pin 9)	IN (pin 10)	MOSFET		
HIGH	HIGH	ON		
HIGH	LOW	OFF		
LOW	HIGH	OFF		
LOW	LOW	ON		

Figure 2, DRF1400 Test Circuit

The test circuit illustrated in Figure 2 was used to evaluate the DRF1400. The input control signal is applied via IN and SG pins using RG188. This provides excellent noise immunity and control of the signal ground currents. The $+V_{DD}$ inputs (pins 2, 6, 8 and 12) should be heavily by-passed by 1uF capacitors as close to the pins as possible. The capacitors used for this function must be capable of supporting the RMS currents and frequency of the gate load. A 50 Ohm (RL) load is used to evaluate the output performance.

DRF1400

Pin	Pin Assignments				
Pin 1	High Side GND				
Pin 2	U1 +Vdd				
Pin 3	U1 FN				
Pin 4	U1 IN				
Pin 5	U1 SG				
Pin 6	U1 +Vdd				
Pin 7	High Side GND				
Pin 8	Low Side GND				
Pin 9	U2 +Vdd				
Pin 10	U2 FN				
Pin 11	U2 IN				
Pin 12	U2 SG				
Pin 13	U2 +Vdd				
Pin 14	Low Side GND				
Pin 15	Source				
Pin 16	Output				
Pin 17	Drain				

