


#### Improved Standard Products®

# P-Channel JFET, Voltage Controlled Resistor

| ABSOLUTE MAXIMUM RATINGS <sup>1</sup>    |                         |
|------------------------------------------|-------------------------|
| @ 25 °C (unless otherwise stated)        |                         |
| Maximum Temperatures                     |                         |
| Storage Temperature                      | -55 to +150°C           |
| Junction Operating Temperature           | -55 to +135°C           |
| Maximum Power Dissipation                |                         |
| Continuous Power Dissipation @ Ta= +25°C | 350mW                   |
| Maximum Currents                         |                         |
| Gate Forward Current                     | $I_{G(F)} = 10mA$       |
| Maximum Voltages                         |                         |
| Gate to Source                           | $V_{GSS} = +40V$        |
| Gate to Drain                            | V <sub>GDS</sub> = +40V |



#### **Features**

- Continuous Voltage-Controlled Resistance
- · High Off-Isolation
- High Input Impedance
- Gain Ranging Capability
- · Simplified Drive Voltage Capabilities
- No Circuit Interaction
- Wide Range Signal Attenuation

#### **Benefits**

- Wide Range Signal Attenuation
- Gain Ranging
- · Simplified Gate Drive
- High Breakdown Voltage
- No Circuit Interaction

#### **Applications**

- Variable Gain Amplifiers
- · Automatic Gain Control
- Voltage Controlled Oscillator
- Small Signal Attenuations
- Filter Range Control

## **Description**

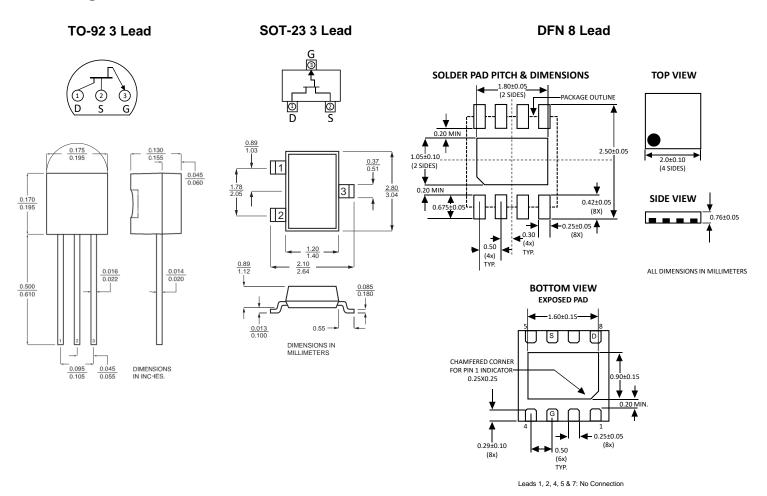
The LS26VPS P-Channel Single JFET voltage-controlled resistor has a drain-source resistance that is controlled by a DC bias voltage (Ves) applied to a high impedance gate terminal. Minimum RDS of 20  $\Omega$  occurs when Ves = 3.0V. As Ves approaches the pinch-off voltage of 7.5V, RDS rapidly increases to the maximum value or RDS = 50  $\Omega$ .

The LS26VPS is specially intended for applications where the drain-source voltage is a low-level AC signal with no DC component. The key device performance is the predictable RDS change from 20 to 50  $\Omega$  with no change in V<sub>cs</sub> voltage. The LS26VPS is available in TO-92 (3 Lead), SOT-23 (3 Lead) and small foot-print DFN (8 Lead) packages.

### Static Electrical Characteristics @ Tj= 25°C (unless otherwise stated)

| SYMBOL               | CHARACTERISTIC                   | MIN  | TYP | MAX | UNITS | CONDITIONS                                       |
|----------------------|----------------------------------|------|-----|-----|-------|--------------------------------------------------|
| BV <sub>GSS</sub>    | Gate to Source Breakdown Voltage | +40  |     |     | V     | $I_G = +1\mu A$ , $V_{DS} = 0V$                  |
| V <sub>GS(OFF)</sub> | Gate to Source Pinch-off Voltage | 3.0  |     | 7.5 | V     | $V_{DS} = -10V, I_{D} = -1\mu A$                 |
| I <sub>GSS</sub>     | Gate to Source Leakage Current   |      |     | 1.0 | nA    | $V_{GS} = +20V, V_{DS} = 0V$                     |
| $V_{GS(F)}$          | Gate to Source Forward Voltage   |      | 0.7 |     | V     | $I_G = 1 \text{mA}, I_D = 0 \text{A}$            |
| RDS(on)1             | Drain to Source "ON" Resistance  | 20   | 35  | 50  | Ohms  | V <sub>DS</sub> = -0.5V, I <sub>D</sub> = -2.5mA |
| RDS(on)2             | Drain to Source "ON" Resistance  | 20   |     | 50  | Ohms  | V <sub>DS</sub> = -0.5V, I <sub>D</sub> = -5.0mA |
| RDS1/RDS2            | Static Rds(on) Ratio             | 0.90 |     | 1.0 |       |                                                  |

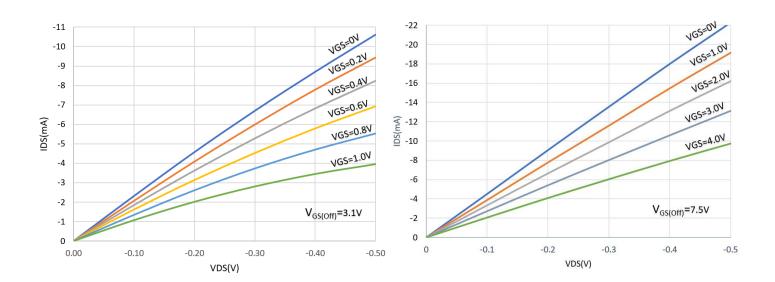
# P-Channel JFET, Voltage Controlled Resistor


## Dynamic Electrical Characteristics @ 25°C (unless otherwise stated)

| SYMBOL           | CHARACTERISTIC                      | MIN | TYP | MAX | UNITS | CONDITIONS                                          |
|------------------|-------------------------------------|-----|-----|-----|-------|-----------------------------------------------------|
| RDS(on)ac        | Drain to Source "ON" Resistance     | 20  |     | 50  | Ohms  | $V_{DS} = -0.50V$ , $I_D = -300 \mu A$ , $f = 1kHz$ |
| C <sub>ISS</sub> | Common Source Input Capacitance     |     | 13  |     | pF    | $V_{DS} = -20V, V_{GS} = 0V, f = 1MHz$              |
| C <sub>RSS</sub> | Common Source Reverse Transfer Cap. |     | 3.6 |     | pF    | $V_{DS} = 0V, \ V_{DS} = +12V, \ f = 1MHz$          |

#### **Notes**

- 1. Absolute maximum ratings are limiting values above which serviceability may be impaired.
- 2. Pulse Test: PW ≤ 300µs, Duty Cycle ≤ 3%
- 3. All characteristics MIN/TYP/MAX numbers are absolute values. Negative values indicate electrical polarity only. Information furnished by Linear Integrated Systems is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.


## **Package Dimensions**



# P-Channel JFET, Voltage Controlled Resistor

# **Typical Characteristics**

# Output Characteristics LS26VPS



## **Ordering Information**

| STANDARD PART CALL-OUT                            |
|---------------------------------------------------|
| LS26VPS TO-92 3L RoHS                             |
| LS26VPS SOT-23 3L RoHS                            |
| LS26VPS DFN 8L RoHS                               |
| CUSTOM PART CALL-OUT                              |
| (CUSTOM PARTS INCLUDE SEL + 4 DIGIT NUMERIC CODE) |
| LS26VPS TO-92 3L RoHS SELXXXX                     |
| LS26VPS SOT-23 3L RoHS SELXXXX                    |
| LS26VPS DFN 8L RoHS SELXXXX                       |