Ph. 480-503-4295 | NOPP@FocusLCD.com ## TFT | CHARACTER | UWVD | FSC | SEGMENT | CUSTOM | REPLACEMENT # **TFT Display Module** Part Number E30RA-FW350-C ## Overview: - 3.0-inch TFT (52.72x83.28) - 480 854 - 'k8" '@ - ‡ u - All View - Transmissive - Capacitive Touch Panel - 350 NITS - Controllers: ST7701S, FT5436 - RoHS Compliant ## Description This is a color active matrix TFT (Thin Film Transistor) LCD (Liquid Crystal Display) that uses amorphous silicon TFT as a switching device. This model is composed of a transmissive type TFT-LCD Panel, driver circuit, and a backlight unit. The resolution of the 2.95" TFT-LCD contains 480(RGB)x854 pixels and can display up to 16.7M colors. ## **TFT Features** Low Input Voltage: 3.3V Display Colors: 16.7M colors Interface: 16/18/24-bit RGB | General Information Items | Specification Main Panel | Unit | Note | |---------------------------|--|---------|------| | TFT Display area (AA) | 36.72(H) x 65.28(V) (2.95 inch) | mm | - | | Driver Element | TFT active matrix | - | - | | Display Colors | 16.7M | colors | - | | Number of pixels | 480(RGB)x854 | dots | - | | TFT Pixel arrangement | RGB vertical stripe | - | - | | Pixel pitch | 0.0765 (H) x 0.07644 (V) | mm | - | | Viewing angle | ALL | o'clock | - | | TFT Controller IC | ST7701S | - | - | | Interface | 16/18/24-bit RGB | - | - | | Display mode | Transmissive/ Normally Black | - | - | | Operating temperature | -20~+70 | °C | - | | Storage temperature | -30∼+80 | °C | - | | Module Bonding Technology | Optical Bonding between LCM and CTP | - | - | | CTP Resolution | 480(H)*854(V) | - | - | | CTP Structure | G+G | - | - | | CTP Controller IC | FT5436 | - | - | | CTP Interface | I2C | - | - | | CTP Slave Address | 0x38(7bit)/8bit:0x70(Write) 0x71(Read) | - | - | | Touch Mode | Multipoint and Gesture | - | - | #### **Mechanical Information** | Item | | Min | Тур. | Max | Unit | Note | |----------------|--------------|-----|-------|-----|------|------| | NA . d. l. | Height (H) | | 52.72 | | mm | - | | Module
size | Vertical (V) | | 83.28 | | mm | - | | 3.20 | Depth (D) | | 4.22 | | mm | - | | | Weight | | | | g | | ## 1. Outline Dimensions 3 www.FocusLCDs.com ## 2. Block Diagram ## 3. Input Terminal Pin Assignment Recommended TFT Connector: FH12S-45S-0.5SH(55) | Recommended CTP Connector: FH12-8S-0.5SH(55) | Symbol | Description | 1/0 | |----------|--|---| | XR(NC) | Touch panel right glass terminal. Leave open when not used. | A/D | | YD(NC) | Touch panel bottom film terminal. Leave open when not used. | | | XL(NC) | Touch panel left glass terminal. Leave open when not used. | A/D | | YU(NC) | Touch panel top film terminal. Leave open when not used. | A/D | | GND | Ground | Р | | GND | Ground | Р | | VCI | Supply voltage (3.3V) | Р | | IOVCC | Supply voltage (Logic) (1.8-3.3V) | Р | | SDO | Serial data output pin for SPI interface. Leave open when not used. | 0 | | SDI | Serial data input/output bidirectional pin for SPI interface. | 1/0 | | SCL | Serial clock input for SPI interface | - 1 | | Ç | Chip select signal. Low: the chip is selected and accessible. High: the chip is not | _ | | CS | selected and not accessible. | ı | | DECET | External reset input. Initializes the chip with a low input. Execute a power-on reset | | | INLOCI | | ! | | DB23-DB0 | 24-bit parallel data bus for RGB interface. Fix to IOVCC or GND when not used. | I/O | | DE | Data enable signal for RGB interface. Low: access enabled. High: access inhibited. Fix | | | | to IOVCC or GND when not used. | ' | | PCLK | Dot clock signal for RGB interface. | I | | HSYNC | Line synchronizing signal for RGB interface. | I | | VSYNC | Frame synchronizing signal for RGB interface. | I | | NC | Not connected | | | LEDK | Cathode pin of backlight | Р | | NC | Not connected | | | LEDA | Anode pin of backlight | Р | | | XR(NC) YD(NC) XL(NC) YU(NC) GND GND VCI IOVCC SDO SDI SCL CS RESET DB23-DB0 DE PCLK HSYNC VSYNC NC LEDK NC | XR(NC) Touch panel right glass terminal. Leave open when not used. YD(NC) Touch panel bottom film terminal. Leave open when not used. XL(NC) Touch panel left glass terminal. Leave open when not used. YU(NC) Touch panel top film terminal. Leave open when not used. GND Ground GND Ground VCI Supply voltage (3.3V) IOVCC Supply voltage (Logic) (1.8-3.3V) SDO Serial data output pin for SPI interface. Leave open when not used. SCL Serial clock input for SPI interface. CS Serial clock input for SPI interface CS Chip select signal. Low: the chip is selected and accessible. High: the chip is not selected and not accessible. RESET External reset input. Initializes the chip with a low input. Execute a power-on reset after supplying power. DB23-DB0 24-bit parallel data bus for RGB interface. Fix to IOVCC or GND when not used. DCC or GND when not used. PCLK Dot clock signal for RGB interface. HSYNC Line synchronizing signal for RGB interface. VSYNC Frame synchronizing signal for RGB interface. NC Not connected LEDK Cathode pin of backlight NC Not connected | I: Input, O: Output, P: Power ## 3.2 CTP | NO. | Symbol | Description | 1/0 | |-----|--------|--------------------------------|-----| | 1 | GND | Ground | Р | | 2 | VDDIO | I/O power supply voltage | Р | | 3 | VDD | Supply voltage | Р | | 4 | SCL | I2C clock input | - 1 | | 5 | SDA | I2C data input and output | - 1 | | 6 | INT | External interrupt to the host | - 1 | | 7 | RST | External reset. Low is active. | I | | 8 | GND | Ground | Р | ## 4. LCD Optical Characteristics ## 4.1 Optical Specifications | Item | | Symbol | Condition | Min | Тур. | Max | Unit | Note | |-----------------------|----------------|----------------|----------------|--------|--------|--------|--------|--------| | Color Gan | nut | S% | | 49 | 54 | | % | (3) | | Contrast R | atio | CR | | 1000 | 1500 | | % | (2) | | Response Time | Rising | TR+TF | | | 25 | 35 | ms | (4) | | kesponse nine | Falling | INTIF | | | 23 | 33 | 1115 | (4) | | | \ A / - ! + - | W _X | θ=0 | 0.2669 | 0.3069 | 0.3469 | | | | | White | W _Y | Normal viewing | 0.2937 | 0.3337 | 0.3737 | | | | | Red | R _X | angle | 0.5499 | 0.6099 | 0.6499 | | | | Color Filter | Keu | R _Y | | 0.3301 | 0.3701 | 0.4101 | | (5)(6) | | Chromaticity | Green | G _X | | 0.2917 | 0.3317 | 0.3717 | | (5)(6) | | | Green | G _Y | | 0.5291 | 0.5691 | 0.6097 | | | | | Blue | B _X | | 0.1078 | 0.1478 | 0.1878 | | | | | blue | B_Y | | 0.0467 | 0.0867 | 0.1267 | | | | | | ΘL | | 80 | 85 | | | | | Viewing Angle | Hor. | ΘR | CR≥10 | 80 | 85 | | dograa | (1)(6) | | | | ΘТ | | 80 | 85 | | degree | (1)(6) | | | Ver. | ΘВ | | 80 | 85 | | | | | Option View Direction | | | | ALL | | | | (1) | #### **Optical Specification Reference Notes:** (1) Definition of Viewing Angle: The viewing angle is the angle at which the contrast ratio is greater than 10. The viewing angles are determined for the horizontal or 3,9 o'clock direction and the vertical or 6,12 o'clock direction with respect to the optical axis which is normal to the LCD surface. (2) Definition of Contrast Ratio (Cr): measured at the center point of panel. The contrast ratio (Cr) measured on a module, is the ratio between the luminance (Lw) in a full white area (R=G=B=1) and the luminance (Ld) in a dark area (R=G=B=0). $$Cr = \frac{Lw}{Ld}$$ (3) Definition of transmittance (T%): The transmittance of the panel including the polarizers is measured with electrical driving. The equation for transmittance Tr is: $$Tr = \frac{It}{Io} \times 100\%$$ Io = the brightness of the light source. It = the brightness after panel transmission (4) Definition of Response Time (Tr, Tf): The rise time 'Tr' is defined as the time for luminance to change from 90% to 10% as a result of a change of the electrical condition. The fall time 'Tf' is defined as the time for luminance to change from 10% to 90% as a result of a change of the electrical condition. ## (5) Definition of Color Gamut: Measuring machine CFT-01. NTSC's Primaries: R(x,y,Y),G(x,y,Y), B(x,y,Y). FPM520 of Westar Display Technologies, INC., which utilized SR-3 for Chromaticity and BM-5A for other optical characteristics. The color chromaticity shall be calculated from the spectral data measured with all pixels first in red, green, blue and white. Measurements shall be made at the center of the panel. Fig. 1931 CIE chromacity diagram Color gamut: $S = \frac{\text{Area of RGB triangle}}{\text{Area of NTSC triangle}} \times 100\%$ #### (6) Definition of Optical Measurement Setup: The LCD module should be stabilized at a given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting backlight for 20 minutes. ## 5. TFT Electrical Characteristics ## 5.1 Absolute Maximum Rating (Ta=25 °C, VSS=0V) | Characteristics | Symbol | Min | Max | Unit | |----------------------------------|--------|------|-----|------| | Digital Supply Voltage | VDD | -0.3 | 4.6 | V | | Digital Interface Supply Voltage | IOVCC | -0.3 | 4.6 | V | | Operating Temperature | ТОР | -20 | +70 | °C | | Storage Temperature | TST | -30 | +80 | °C | NOTE: If the absolute maximum rating of the above parameters is exceeded, even momentarily, the quality of the product may be degraded. Absolute maximum ratings specify the values which the product may be physically damaged if exceeded. Be sure to use the product within the range of the absolute maximum ratings. ## **5.2** DC Electrical Characteristics | Characteristics | Symbol | Min | Тур. | Max | Unit | Note | |------------------------------------|--------|----------|------|----------|------|------| | Digital Supply Voltage | VCI | 2.5 | 3.3 | 3.6 | V | | | Digital Interface Supply Voltage | IOVCC | 1.65 | 1.8 | 3.3 | V | | | Normal Mode Current
Consumption | IDD | | 38 | 76 | mA | | | Level Input Voltage | VIH | 0.7IOVCC | | IOVCC | V | | | Level input voltage | VIL | GND | | 0.3IOVCC | V | | | Level Output Voltage | VOH | 0.8IOVCC | | IOVCC | V | | | Level output voltage | VOL | GND | | 0.2IOVCC | V | | ## 5.3 LED Backlight Characteristics The backlight system is edge lighting type with 6 chips | Item | Symbol | Min | Тур. | Max | Unit | Note | |-----------------|----------------|-------|------|-----|-------|--------------| | Forward Current | lF | 15 | 20 | | mA | | | Forward Voltage | V _F | | | | V | | | LCM Luminance | LV | 300 | 350 | | cd/m2 | Note 3 | | LED lifetime | Hr | 50000 | | | hour | Note1
& 2 | | Uniformity | AVg | 80 | | 1 | % | Note 3 | Note 1: LED lifetime (Hr) can be defined as the time in which it continues to operate under the condition: $Ta=25 \pm 3$ °C, typical IL value indicated in the above table until the brightness becomes less than 50%. Note 2: The "LED lifetime" is defined as the module brightness decrease to 50% original brightness at $Ta=25^{\circ}C$ and IL=20mA **Backlight LED Circuit** Note 3: Luminance Uniformity of these 9 points is defined as below: ## 6. AC Characteristic ## 6.1 Parallel RGB Interface Characteristics Figure 6.1: Parallel RGB Interface Timing Diagram | Signal | Symbol | Parameter | Min | Max | Unit | Description | |-----------------|-------------------------|-------------------------------|-----|-----|------|-------------| | HSYNC,
VSYNC | T_{SYNCS} | VSYNC, HSYNC Setup Time | 5 | - | ns | | | | T_{ENS} | Enable Setup Time | 5 | - | ns | | | ENABLE | T_{ENH} | Enable Hold Time | 5 | - | ns | | | | PWDH | DOTCLK High-level Pulse Width | 15 | - | ns | | | | PWDL | DOTCLK Low-level Pulse Width | 15 | - | ns | | | DOTCLK | T_{CYCD} | DOTCLK Cycle Time | 33 | - | ns | | | | T_{RGHR} , T_{RGHF} | DOTCLK Rise/Fall Time | - | 15 | ns | | | | T_{PDS} | PD Data Setup Time | 5 | _ | ns | | | DE | T_{PDH} | PD Data Hold Time | 5 | - | ns | | Table 6.1: Parallel RGB Interface Timing Characteristics ## 6.2 Display Serial Interface Characteristics (3-line SPI system) Figure 6.2: Serial Interface 3-SPI Timing Diagram IOVCC=1.8V, VCI=2.8V Ta=-30 to 70 Co | Signal | Symbol | Parameter | Min | Max | Unit | Description | |------------|--------------------|--------------------------------|-----|-----|------|-------------| | | T _{CSS} | Chip select setup time (write) | 15 | | ns | | | | T _{CSH} | Chip select hold time (write) | 15 | | ns | | | CSX | T _{CSS} | Chip select setup time (read) | 60 | | ns | | | | T _{SCC} | Chip select hold time (read) | 60 | | ns | | | | T _{CHW} | Chip select "H" pulse width | 40 | | ns | | | | T _{SCYCW} | Serial clock cycle (write) | 66 | | ns | | | | T _{SHW} | SCL "H" pulse width (write) | 15 | | ns | | | SCL | T _{SLW} | SCL "L" width (write) | 15 | | ns | | | SCL | T _{SCYCR} | Serial clock cycle (read) | 150 | | ns | | | | T _{SHR} | SCL "H" pulse width (read) | 60 | | ns | | | | T _{SLR} | SCL "L" pulse width (read) | 60 | | ns | | | SDA (DINI) | T _{SDS} | Data setup time | 10 | | nc | | | SDA (DIN) | T_{SDH} | Data hold time | 10 | | ns | | Table 6.2: 3-line Serial Interface Timing Characteristics Note: The rising time and falling time (Tr, Tf) of input signal are specified at 15 ns or less. Logic high and low levels are specified as 30% and 70% of VDDI for Input signals #### 6.3 Reset Timing Figure 6.3: Reset Timing Diagram | Related Pins | Symbol | Parameter | Min | Max | Unit | |--------------|--------|----------------------|-----|--------------------|------| | | TRW | Reset pulse duration | 10 | - | us | | RESX | TDT | Danet samuel | - | 5 (Note 1,5) | ms | | | TRT | Reset cancel | | 120 (Note 1, 6, 7) | ms | #### Notes: - 1. The reset cancel includes also required time for loading ID bytes, VCOM setting and other settings from NVM (or similar device) to registers. This loading is done every time when there is HW reset cancel time (tRT) within 5ms after a rising edge of RESX. - 2. Spike due to an electrostatic discharge on RESX line does not because irregular system reset according to the table below: | RESX Pulse | Action | |----------------------|----------------| | Shorter than 5us | Reset Rejected | | Longer than 9us | Reset | | Between 5us and 9 us | Reset starts | - 3. During the resetting period, the display will be blanked (the display is entering blanking sequence, which maximum time is 120ms, when reset starts in Sleep Out mode. The display remains the blank state in Sleep in mode) and then return to Default condition for Hardware Reset. - 4. Spike Rejection also applies during a valid reset pulse as shown below: - 5. When Reset applied during Sleep In Mode. - 6. When Reset applied during Sleep Out Mode. - 7. It is necessary to wait 5ms after releasing RESX before sending commands. Also Sleep Out command cannot be sent for 120ms. #### 7. RGB Interface The ST7701 support RGB interface Mode 1 and Mode 2. The interface signals as shown in ST7701S datasheet table 6.3.1. The Mode 1 and Mode 2 function is select by setting in the Command 2, please reference application note. In RGB Mode 1, writing data to line buffer is done by PCLK and Video Data Bus (D[23:0]), when DE is high state. The external clocks (PCLK, VS and HS) are used for internal displaying clock. So, controller must always transfer PCLK, VS and HS signal to ST7701.In RGB Mode 2, back porch of Vsync is defined by VBP[5:0] of RGBPRCTR command. And back porch of Hsync is defined by HBP[5:0] of RGBPRCTR command. Front porch of Vsync is defined by VFP[5:0] of RGBPRCTR command. And front porch of Hsync is defined by HFP[5:0] of RGBPRCTR command. #### 7.1 DC Electrical Characteristics | RGB I/F Mode | PCLK | DE | VS | HS | DB[23:0] | Register for Blanking Porch Setting | |--------------|------|----------|------|------|----------|-------------------------------------| | RGB Mode 1 | Used | Used | Used | Used | Used | Not Used | | RGB Mode 2 | Used | Not Used | Used | Used | Used | Used | | Symbol | Name | Description | |----------|-----------------|---| | PCLK | Pixel Clock | Pixel clock for capturing pixels at display interface | | HS | Horizontal Sync | Horizontal synchronizing timing signal | | VS | Vertical Sync | Vertical synchronizing timing signal | | DE | Data Enable | Data enable singal (assertion indicates valid pixels) | | DB[23:0] | Pixel Data | Pixel data in 16/18/24-bit formal | #### 7.2 RGB Interface Mode Selection ST7701 supports two kinds of RGB interface, DE mode and HV mode. The table shown below uses command C3h to select RGB interface mode. DE/Sync = 0, DE RGB Mode selected. DE/Sync = 1, HV RGB mode is selected. ## 7.3 RGB Color Format ST7701 supports two kinds of RGB interface, DE mode (mode 1) and HV mode (mode 2), and 16bit/18bit and 24-bit data format. When DE mode is selected and the VSYNC, HSYNC, DOTCLK, DE, D[17:0] pins can be used; when HV mode is selected and the VSYNC, HSYNC, DOTCLK, D[17:0] pins can be used. When using RGB interface, only serial interface can be selected. Below is a table of the color mapping for the data transmission of the RGB interface. | Pad name | 24 bits configuration
VIPF[3:0]=0111 | 18 bits cor
VIPF[3: | 16 bits configuration VIPF[3:0]=0101 | | |----------|---|------------------------|--------------------------------------|----------| | | | MDT=0 | MDT=1 | () | | DB[23] | R7 | Not used | Not used | Not used | | DB[22] | R6 | Not used | Not used | Not used | | DB[21] | R5 | R5 | Not used | Not used | | DB[20] | R4 | R4 | Not used | R4 | | DB[19] | R3 | R3 | Not used | R3 | | DB[18] | R2 | R2 | Not used | R2 | | DB[17] | R1 | R1 | R5 | R1 | | DB[16] | Ro | Ro | R4 | R0 | | DB[15] | G7 | Not used | R3 | Not used | | DB[14] | G6 | Not used | R2 | Not used | | DB[13] | G5 | G5 | R1 | G5 | | DB[12] | G4 | G4 | R0 | G4 | | DB[11] | G3 | G3 | G5 | G3 | | DB[10] | G2 | G2 | G4 | G2 | | DB[09] | G1 | G1 | G3 | G1 | | DB[08] | G0 | G0 | G2 | G0 | | DB[07] | B7 | Not used | G1 | Not used | | DB[06] | B6 | Not used | G0 | Not used | | DB[05] | B5 | B5 | B5 | Not used | | DB[04] | B4 | B4 | B4 | B4 | | DB[03] | Вз | В3 | В3 | В3 | | DB[02] | B2 | B2 | B2 | B2 | | DB[01] | B1 | B1 | B1 | B1 | | DB[00] | Во | Во | Во | Во | ## 7.4 RGB Interface Timing Diagram Note: The setting of front porch and back porch in host must match that in IC as this mode. ## **HV Mode** #### 7.5 RGB Interface Definition The display operation via the RGB interface is synchronized with the VSYNC, HSYNC and DOTCLK signals. The data can be written only within the specified area with low power consumption by using the window address function. The back porch and front porch are used to set the RGB interface timing signals. | Parameter | Symbol | Condition | Min | Тур | Max | Unit | |------------------------|--------|-----------|-----|-----|-----|-------| | DCLK frequency | fclk | | | 17 | | MHz | | Horizontal sync width | hpw | | 1 | 8 | 255 | Clock | | Horizontal back porch | hbp | | 1 | 50 | 255 | Clock | | Horizontal front porch | hfp | | 1 | 10 | | Clock | | Vertical sync width | VS | | 1 | 8 | 254 | Line | | Vertical back porch | vbp | | 1 | 20 | 254 | Line | | Vertical front porch | vfp | | 1 | 21 | | Line | ## 8. CTP Specification ## 8.1 Electrical Characteristics #### 8.1.1 Absolute Maximum Rating | Item | Symbol | Min | Max | Unit | Note | |-----------------------|-----------------|-----|-----|------|------| | Power Supply Voltage | VDD | 2.7 | 3.6 | V | 1 | | I/O Digital Voltage | VDDIO | 1.8 | 3.6 | V | 1 | | Operating Temperature | Т | -20 | +70 | °C | - | | Storage Temperature | T _{ST} | -30 | +80 | °C | - | Note: If used beyond the absolute maximum ratings, FT5436 may permanently damage. It is strongly recommended that the device be used within the electrical characteristics in normal operations. If exposed to the condition not within the electrical characteristics, it may affect the reliability of the device. ## 8.1.2 DC Electrical Characteristics (Ta=25°C) | Item | Symbol | Condition | Min | Тур. | Max | Unit | Note | |---|------------------|-------------------------|----------|------|----------|------|------| | Digital supply voltage | VDD | | 2.7 | | 3.6 | V | | | I/O Leakage Current | ILI | | -1 | | 1 | uA | | | Normal operation mode current consumption | I _{OPr} | VDD=2.8V | | 11 | | mA | | | Monitor mode current consumption | I _{mon} | Ta=25°C
MCLK= | | 0.43 | | mA | | | Sleep mode current consumption | I _{sip} | 17.5M Hz | | 42 | | uA | | | Lovel input veltage | V_{IH} | | 0.7IOVCC | | IOVCC | V | | | Level input voltage | V _{IL} | | -0.3 | | 0.3IOVCC | V | | | Lovel output voltage | V _{OH} | I _{OH} =-0.1mA | 0.7IOVCC | | | V | | | Level output voltage | V _{OL} | I _{OL} =0.1mA | | | 0.3IOVCC | V | | #### 8.1.3 AC Characteristics | Item | Symbol | Test Condition | Min | Тур. | Max | Unit | Note | |-------------------------|--------|--------------------|-----|------|-----|------|------| | OSC clock 1 | fosc1 | VDDA=2.7V; Ta=25°C | 49 | 50 | 51 | MHz | | | I/O output rise
time | Ttxr | VDDA=2.7V; Ta=25°C | - | 210 | - | ns | | | I/O output
fall time | Ttxf | VDDA=2.7V; Ta=25°C | - | 210 | - | ns | | ## 8.1.4 I2C Interface The I2C is always configured in the slave mode. The data transfer format is shown below. | S A[6:0] | R A | D[7:0] | Δ | D[7:0] | Δ | D[7:0] | N P | |----------|-----|----------------|---|--------|---|--------|-----| | A[v.v] | K A | <i>D</i> [7.0] | A | D[7.0] | n | D[7.0] | N I | The following table lists the meanings of the mnemonics used in the above figures. | Mnemonics | Description | |-----------|--| | S | I2C start or I2C restart | | A [6:0] | Slave address | | R/W | Read/Write bit, '1' for read, '0' for write | | A(N) | ACK(NACK) | | Р | Stop: the indication of the end of a packet (if this bit is missing, S will indicate the end of the current packet and the beginning of the next packet) | **I2C Interface Timing Characteristics** | Parameter | Min | Max | Unit | |--|-----|-----|------| | SCL frequency | 0 | 400 | kHz | | Bus free time between a stop and start condition | 1.3 | - | us | | Hold time (repeated) start condition | 0.6 | - | us | | Data setup time | 100 | - | ns | | Setup time for a repeated start condition | 0.6 | - | us | | Setup time for stop condition | 0.6 | - | us | ## 9. Cautions and Handling Precautions #### 9.1 Handling and Operating the Module - 1. When the module is assembled, it should be attached to the system firmly. Do not warp or twist the module during assembly work. - 2. Protect the module from physical shock or any force. In addition to damage, this may cause improper operation or damage to the module and back-light unit. - 3. Note that polarizer is very fragile and could be easily damaged. Do not press or scratch the surface. - 4. Do not allow drops of water or chemicals to remain on the display surface. If you have the droplets for a long time, staining and discoloration may occur. - 5. If the surface of the polarizer is dirty, clean it using some absorbent cotton or soft cloth. - 6. The desirable cleaners are water, IPA (Isopropyl Alcohol) or Hexane. Do not use ketene type materials (ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanent damage to the polarizer due to chemical reaction. - 7. If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, legs, or clothes, it must be washed away thoroughly with soap. - 8. Protect the module from static; it may cause damage to the CMOS ICs. - 9. Use fingerstalls with soft gloves in order to keep display clean during the incoming inspection and assembly process. - 10. Do not disassemble the module. - 11. Protection film for polarizer on the module shall be slowly peeled off just before use so that the electrostatic charge can be minimized. - 12. Pins of I/F connector shall not be touched directly with bare hands. - 13. Do not connect, disconnect the module in the "Power ON" condition. - 14. Power supply should always be turned on/off by the item Power On Sequence & Power Off Sequence. #### 9.2 Storage and Transportation - 1. Do not leave the panel in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0 to 35 °C and relative humidity of less than 70% - 2. Do not store the TFT-LCD module in direct sunlight. - 3. The module shall be stored in a dark place. When storing the modules for a long time, be sure to adopt effective measures for protecting the modules from strong ultraviolet radiation, sunlight, or fluorescent light. - 4. It is recommended that the modules should be stored under a condition where no condensation is allowed. Formation of dewdrops may cause an abnormal operation or a failure of the module. In particular, the greatest possible care should be taken to prevent any module from being operated where condensation has occurred inside. - 5. This panel has its circuitry FPC on the bottom side and should be handled carefully in order not to be stressed.