

SPECIFICATION

OF PRODUCTS

PRODUCT NAME : <u>DIELECTRIC CERAMIC FILTER</u>

PART NUMBER : <u>ECS-DCF-109</u>

Approved by	Checked by	Drawn by
D. Kelly	A. Anderson	I. Lee

ECS Inc. International

15351 W. 109th Street, Lenexa, Kansas 66219 Tel : 1-913-782-7787 Fax : 1-913-782-6991 Web : www.ecsxtal.com

Part Number Sheet		
Customer		
Supplier P/N	ECS-DCF-109	
Customer P/N		

Customer's Approval Certificate		
Checked & Approval by		
Date		

Version	Reason Of Modification	Modification	Drawn	Checked	Approval	Date

Please return this copy after signing as a certification of your approval.

1. SCOPE

This specification shall cover the characteristics of the dielectric ceramic filter with the type ECS-DCF-109.

2. PART NO.

3. OUTLINE DIMENSIONS AND MARK

- 3.1 Appearance: No visible damage and dirt.
- 3.2 Construction: SMD dielectric ceramic Monoblock.
- 3.3 The products conform to the RoHS directive and national environment protection law.
- 3.4 Dimensions and mark

3.5 RECOMMENDED PC BOARD PATTERN

3.6 The recommended shielding case layout guide (min)

3.7 EVB CHARACTERISTICS

3.8 Reference Layer of Multiple Layer Stack up

and reference ground to avoid large capacitance appear.

3.9 Clearance Area

4.1 RATING

Items	Requirement	
Withstand DC Voltage	50V (1min max)	
Insulation Resistance MΩ min.	100 (10V, 1min±5s)	
Storage temperature	-40 \sim 85°C	
Operation Temperature Range °C	-40 \sim 85°C	

4.2 ELECTRICAL SPECIFICATIONS

Items	Requirement	
Center frequency MHz	5442.5	
Bandwidth [BW] MHz	5150-5735	
Insertion Loss in BW dB max	2.2	
Ripple in BW dB max	2.0	
SWR in BW Ratio max.	2.0	
	50.0 @ 0-2500 MHz	
Attenuation[Absolute Value] dB min	40.0 @ 2500-4000 MHz	
	50.0 @ 5925-7125 MHz	
Input Power W max.	1	
In/Out Impedance ohm	50	

ECS Inc. International 15351 W. 109th Street, Lenexa, Kansas 66219 www.ecsxtal.com

Top Layer Clearance Area size 1.90*1.75mm :

4.3 CHARACTERISTIC CURVE

5 ENVIRONMENTAL TESTS

No.	Item	Test Condition	Remark
5.1	Humidity Test	The device is subjected to 90% ~95% relative humidity $40^{\circ}C\pm 2^{\circ}C$ for 96h~98h,then dry out at $25^{\circ}C\pm 5^{\circ}C$ and less than 65% relative humidity for 2h~4h. After drying out the device shall satisfy the specification in table 1.	It shall fulfill the specifications in Table 1.
5.2	High Temperature Exposure	The device shall satisfy the specification in table 1 after leaving at 85°C for 16h,provided it would be measured after 2h~4h leaving in 25°C±5°C and less than 65% relative humidity.	It shall fulfill the specifications in Table 1.
5.3	Low Temperature	The device shall satisfy the specification in table 1 after leaving at- 40°C for16h,provided it would be measured after 2h~4h leaving in 25°C±5°C and less than 65% relative humidity.	It shall fulfill the specifications in Table 1.
5.4	Temperature Cycle	Subject the device to -25°C for 30 min. followed by a high temperature of 85°C for 30 min cycling shall be repeated 5 times. At the room temperature for 1h~4h prior to the measurement.	It shall fulfill the specifications in Table 1.
5.5	Vibration	Subject the device to vibration for 2h each in x_x y and z axis with the amplitude of 1.5mm, the frequency shall be varied uniformly between the limits of 10Hz~55Hz.	It shall fulfill the specifications in Table 1.
5.6	Soldering Test	The device should be satisfied after preheating at $120^{\circ}C\sim150^{\circ}C$ for 60seconds and dipping in soldering Sn an $260^{\circ}C\pm5^{\circ}C$ for 10 ± 1 seconds.	Mechanical damage shall not occur.
5.7	Solder Ability	Dipped in 260°C±5°C solder bath for 3s±0.5 s with rosin flux (25wt% ethanol solution.)	The terminals shall be at least 95% covered by solder.
5.8	Terminal Pressure Strength	Solder Solder The device is subjected to be soldered to be soldered on test PCB .Then apply 5N of force for 10s±1s in the direction of the arrow.	Mechanical damage such as breaks shall not occur.

Table 1

Item	Characteristics after test	
Insertion Loss Change dB max	±0.3	
Ripple Change dB max	±0.3	
Return loss. dB max	±2.0	
Attenuation Change dB max ±4.0		
Note: The limits in the above table are referenced to the initial measurements.		

6. Recommended soldering conditions

Phase	Profile features	Pb-Free Assembly
PREHEAT	-Temperature Min	
	-Temperature Max	200°C
	-Time form	60-120 seconds
RAMP-UP	Avg. Ramp-up Rate 200 °C	3°C/second(max)
	to 260°C)	
REFLOW	-Temperature	220°C
	-Total Time above 220°C	30-100 seconds
PEAK	-Temperature	260°C
	-Time	3-5 seconds
RAMP-DOWN	Rate	2-6°C/second
Time from 25°C to Peak Temperature		8 minutes max
Composition of solder paste		Ag3.0/Cu0.5/ Sn

7. OTHER

7.1 Caution

7.1.1 Don't apply excess mechanical stress to the component and terminals at soldering. Do not use this product with bend.

7.1.2 Do not clean or wash the component for it is not hermetically sealed.

7.1.3 Do not use strong acidity flux, more than 0.2wt% chlorine content, in flow soldering.

7.1.4 This specification mentions the quality of the component as a single unit. Please ensure the component is thoroughly evaluated in your application circuit

7.1.5 Expire date (Shelf life) of the products is six months after delivery under the conditions of a sealed and an unopened package. Please use the products within six months after delivery. If you store the products for a long time (more than six months), use carefully because the products may be degraded in the solderability or rusty. Please confirm solderability and characteristics for the products regularly.

7.1.6 Please contact us before using the product as automobile electronic component.

7.2 Notice

7.2.1 Please return one of these specifications after your signature of acceptance.