

AVE240C-48S12

240 Watts Half-brick Converter

Total Power:240 WattsInput Voltage:36 to 75 Vdc# of Outputs:Single

Special Features

- Delivering up to 20A output
- Ultra-high efficiency 94.6% typ. at full load;95% typ. at half load
- Wide input range: 36V ~ 75V
- Excellent thermal performance
- No minimum load requirement
- RoHS compliant
- Remote ON/OFF control function
- Remote output sense
- Trim function: -10% ~ +10%
- Input under voltage lockout
- Output over current protection
- Output over voltage protection
- Over temperature protection
- Industry standard half-brick pin-out outline
- · Pin length optional

Safety

IEC/EN/UL/CSA 60950 CE Mark TUV FCC Class A EN55022 Class A

Product Descriptions

The AVE240C-48S12 is a single output DC-DC converter with standard halfbrick form factor and pin configuration. It delivers up to 20A output current with 12V output voltage. Ultal-high 94.6% efficiency and excellent thermal performance makes it an ideal choice to use in telecom and datacom applications and can operate under an ambient temperature range of -40 °C ~ +85 °C.

Applications

Telecom/ Datacom

Model Numbers

Standard	Output Voltage	Structure	Remote ON/OFF logic	RoHS Status
AVE240C-48S12-4L	12Vdc	Baseplated	Negative	R6
AVE240C-48S12P-4L	12Vdc	Baseplated	Positive	R6

Ordering information

AVE240	С	-	48	S	12	Р	-	4	L
1)	2		3	4	5	6		\bigcirc	8

1	Series name	AVE: series name, 240: rated output power 240W
2	Version	C: Version C
3	Input voltage	48: 36V ~ 75V input range, rated input voltage 48V
(4)	Output number	S: single output
5	Rated output voltage	12: 12V output
6	Remote ON/OFF logic	P: positive logic; Default: negative logic,
\bigcirc	Pin length	4: 4.80 mm \pm 0.5mm
8	RoHS status	L: RoHS, R6

Options

None

Electrical Specifications

Absolute Maximum Ratings

Stress in excess of those listed in the "Absolute Maximum Ratings" may cause permanent damage to the power supply. These are stress ratings only and functional operation of the unit is not implied at these or any other conditions above those given in the operational sections of this TRN. Exposure to any absolute maximum rated condition for extended periods may adversely affect the power supply's reliability.

Table 1. Absolute Maximum Ratings:

Parameter	Model	Symbol	Min	Тур	Max	Unit
Input Voltage						
Operating -Continuous Non-operating -100mS	All All	V _{IN,DC}	-	-	80 100	Vdc Vdc
Maximum Output Powerff	All	P _{O,max}	-	-	240	W
Isolation Voltage ¹ Input to output Input to baseplate Outputs to baseplate	All		-	- -	1500 1500 500	Vdc Vdc Vdc
Ambient Operating Temperature	All	T _A	-40	-	+85	°C
Storage Temperature	All	T _{STG}	-55	-	+125	°C
Humidity (non-condensing) Operating Non-operating	All All		-	-	95 95	% %
Voltage at remote ON/OFF pin	All		-0.7	-	+12	V

Note1:1mA for 60s,slew rate = 1500V/10s

Input Specifications

Table 2. Input Specifications:

Parameter	Conditions ¹	Symbol	Min	Тур	Мах	Unit
Operating Input Voltage, DC	All	V _{IN,DC}	36	48	75	Vdc
Turn-on Voltage Threshold	$I_{O} = I_{O,max}$	V _{IN,ON}	31	35.1	36	Vdc
Turn-off Voltage Threshold	$I_{O} = I_{O,max}$	V _{IN,OFF}	30	33.6	35	Vdc
Lockout Voltage Hysteresis	$I_{O} = I_{O,max}$		1	1.5	3	V
Maximum Input Current $(I_0 = I_0, max)$	$V_{IN,DC} = 36V_{DC}$	I _{IN,max}	-	-	8	А
No-load input current	$I_{O} = 0A$	I _{IN}	-	-	0.09	А
Standby Input current	Remote OFF	I _{IN}	-	-	0.05	А
Inrush current transient rating	Power ON		-	-	2	A ² s
Recommended Input Fuse	Fast blow external fuse recommended		-	-	20	А
Input filter component values (C\L)	Internal values			11\1		μF∖µH
Recommended External Input Capacitance	Low ESR capacitor recommended	C _{IN}	-	100	-	uF
Input Reflected Ripple Current	Through 12uH inductor		-	-	80	mA
Operating Efficiency	$T_{A}=25 \ ^{O}C$ $I_{O}=I_{O,max}$ $I_{O}=50\% I_{O,max}$	η	-	94.6 95	-	% %

Note 1 - Ta = 25 °C, airflow rate = 400 LFM, Vin = 48Vdc, nominal Vout unless otherwise noted.

Output Specifications

Table 3. C	Dutput Specifications:
------------	------------------------

Parameter		Condition ¹	Symbol	Min	Тур	Max	Unit
Factory Set Voltage		$V_{IN,DC} = 48V_{DC}$ $I_O = I_{O,max}$	Vo	11.8	12.0	12.2	Vdc
Total Regulation		Inclusive of line, load temperature change, warm-up drift	Vo	11.9	12.0	12.1	Vdc
Output Voltage Line Reg	gulation	All	%V _O	-	0.05	-	%
Output Voltage Load Re	gulation	All	%V _O	-	0.1	-	%
Output Voltage Tempera	ature Regulation	All	%V ₀	-	0.02	-	%/ ⁰ C
Output Voltage Trim Rar	nge	All	Vo	10.8	-	13.2	V
Output Ripple, pk-pk		Measure with a 1uF ceramic capacitor in parallel with a 10uF tantalum capacitor, 0 to 20MHz bandwidth	Vo	-	150	180	mV _{PK-PK}
Output Current		All	Ι _Ο	0	-	20	Α
Output DC current-limit i	nception ²		Ι _ο	22	24	28	Α
V _O Load Capacitance ³		All	Co	470	-	10000	uF
V _O Dynamic Response	Peak Deviation	50%~75%~50% load change slew rate = 0.1A/us	±V _O T _s	- -	230 40	- -	mV uSec
Settling Time (Recovery to within 1% Vo,max)		50%~75%~50% load change slew rate = 1A/us	±V _O T _s	-	281 70	-	mV uSec
	Rise time	$I_0 = I_{max}$	T _{rise}	-	25	-	mS
Turn-on transient	Turn-on delay time	I _O = I _{max}	T _{turn-on}	-	60	-	mS
	Output voltage overshoot	I _O = Imax T _A = 25°C	%V _o	-	0	-	%

Note 1 - Ta = 25 °C, airflow rate = 400 LFM, Vin = 48Vdc, nominal Vout unless otherwise noted.

Note 2 - Hiccup: auto-restart when over-current condition is removed.

Note 3 - High frequency and low ESR is recommended.

Output Specifications

Table 3. Output Specifications, con't:

Parameter		Conditions ¹	Symbol	Min	Тур	Max	Unit
Switching frequency		All	f _{sw}	265	270	275	KHz
Remote ON/OFF	Off-state voltage	All		-0.7	-	1.2	V
control (positive logic)	On-state voltage	All		3.5	-	12	V
Remote ON/OFF	Off-state voltage	All		3.5	-	12	V
control (Negative logic)	control (Negative logic) On-state voltage			-0.7	-	1.2	V
Output over-voltage prot	ection ⁴	All	Vo	14.6	-	16	V
Output over-temperature	eprotection ⁵	All	Т	-	118	-	°C
Over-temperature hyster	resis	All	Т	-	10	-	°C
Output voltage remote sense range		All	±Vo	-	-	0.5	V
MTBF		Telcordia SR-332- 2006; 80% load, 300LFM, 40 ^o C T _A		-	1.5	-	10 ⁶ h

Note 4 - Hiccup: auto-restart when over-voltage condition is removed.

Note 5 – Auto recovery.

Rev.10.13.14_#1.1 AVE240C-48S12 Page 7

AVE240C-48S12 Performance Curves

Rev.10.13.14_#1.1 AVE240C-48S12 Page 8

AVE240C-48S12 Performance Curves

Mechanical Specifications

Mechanical Outlines

X.XXmm \pm 0.25mm[X.XX in. \pm 0.01in.]

Pin Length Options

Device code suffix	L
-4	4.8 mm \pm 0.5 mm
-6	3.8 mm ± 0.5 mm
-8	2.8 mm ± 0.5 mm
None	5.8 mm ± 0.5 mm

-

Pin Designations

Pin No	Name	Function
1	Vin+	Positive input voltage
2	CNT	Remote ON/OFF control
3	Case	
4	Vin-	Negative input voltage
5	Vo-	Negative output voltage
6	S-	Negative remote sense
7	Trim	Output voltage trim
8	S+	Positive remote sense
9	Vo+	Positive output voltage

Environmental Specifications

EMC Immunity

AVE240C-48S12 Series power supply is designed to meet the following EMC immunity specifications:

Document	Description	Criteria
EN55022, Class A Limits	Conducted and Radiated EMI Limits	/
IEC/EN 61000-4-2, Level 3	Electromagnetic Compatibility (EMC) - Testing and measurement techniques - Electrostatic discharge immunity test. Enclosure Port	В
IEC/EN 61000-4-4, Level 3	Electromagnetic Compatibility (EMC) - Testing and measurement techniques, Electrical Fast Transient. DC input port.	В
IEC/EN 61000-4-5	Electromagnetic Compatibility (EMC) - Testing and measurement techniques, Immunity to surges - 600V common mode and 600V differential mode for DC ports	В
IEC/EN 61000-4-6, Level 2	Electromagnetic Compatibility (EMC) - Testing and measurement techniques, Continuous Conducted Interference. DC input port	A
EN61000-4-29	Electromagnetic Compatibility (EMC) - Testing and measurement techniques, Voltage Dips and short interruptions and voltage variations. DC input port	В

Criterion A: Normal performance during and after test.

Criterion B: For EFT and surges, low-voltage protection or reset is not allowed. Temporary output voltage fluctuation ceases after disturbances ceases, and from which the EUT recovers its normal performance automatically.

For Dips and ESD, output voltage fluctuation or reset is allowed during the test, but recovers to its normal performance automatically after the disturbance ceases.

Criterion C: Temporary loss of output, the correction of which requires operator intervention.

Criterion D: Loss of output which is not recoverable, owing to damage to hardware.

Rev.10.13.14_#1.1 AVE240C-48S12 Page 12

EMC Filter Configuration

Figure 10 EMC test configuration

- C1/C7: 1000nF/100V X7R ceramic capacitor
- C2: 100nF/100V X7R ceramic capacitor
- C3: $100\mu F/100V$ electrolytic capacitor
- C6: 470 μ F/50V electrolytic capacitor
- C4/C5: 0.1U/1000V X7R ceramic capacitor
- L1: 809 μ H- \pm 25%-9.7A-R5K common-mode inductor

AVE240C-48S12 Page 13

Safety Certifications

The AVE240C-48S12 power supply is intended for inclusion in other equipment and the installer must ensure that it is in compliance with all the requirements of the end application. This product is only for inclusion by professional installers within other equipment and must not be operated as a stand alone product.

Table 4. Safety Certifications for AVE240C-48S12 series power supply system

Document	File#	Description
UL/CSA 60950		US and Canada Requirements
EN60950		European Requirements
IEC60950		International Requirements
TUV		German Requirements
CE		CE Marking

Page 14

Operating Temperature

The AVE240C series power supplies will start and operate within stated specifications at an ambient temperature from -40 °C to 85 °C under all load conditions. The storage temperature is -55 °C to 125 °C.

Thermal Considerations

The converter is designed to operate in different thermal environments and sufficient cooling must be provided.

Proper cooling of the DC-DC converter can be verified by measuring the temperature at the test point(s). The temperature at this/these point(s) should not exceed the max values in the Table 5.

The converter can operate in an enclosed environment without forced air convection. Cooling of the converter is achieved mainly by conduction from the baseplate to a heatsink. The converter can deliver full output power at 85 ^oC ambient temperature provided the baseplate temperature is kept below the max values in the following table.

Figure 11 Test point on baseplate

Table 5 Temperature limit of the test points

Test point	Temperature limit	
Test point	113 ^o C	

Thermal Considerations, con't

The converter can also operate with a smaller heatsink and sufficient airflow. Figure 14 shows the derating output current vs. ambient air temperature at different air velocity with a specified heatsink.

The typical test condition is shown in Figure 12.

Figure 12 Typical test condition, forced airflow direction is from V_{in} - to V_{in} +

Figure 13 Outline drawing of the heatsink

Thermal Considerations, con't

The converter can operate with a smaller heatsink and sufficient airflow. Figure 14 shows the derating output current vs. ambient air temperature at different air velocities with a specified heatsink.

Figure 14 Output power derating, 48V_{in}, air flowing across the converter from V_{in}- to V_{in}+

Qualification Testing

Parameter	Unit (pcs)	Test condition
Halt test	4-5	$T_{a,min}$ -10 °C to $T_{a,max}$ +10 °C, 5 °C step, V_{in} = min to max, 0 ~ 105% load
Vibration	3	Frequency range: 5Hz \sim 20Hz, 20Hz \sim 200Hz, A.S.D: $1.0m^2/s^3,$ -3db/oct, axes of vibration: X/Y/Z. Time: 30min/axes
Mechanical Shock	3	30g, 6mS, 3axes, 6directions, 3time/direction
Thermal Shock	3	-40 °C to 100 °C, unit temperature 20cycles
Thermal Cycling	3	-40 $^{\circ}$ C to 55 $^{\circ}$ C, temperature change rate: 1 $^{\circ}$ C/min, cycles: 2cycles
Humidity	3	40 ^o C, 95%RH, 48h
Solder Ability	15	IPC J-STD-002C-2007

Application Notes

Typical Application

Below is the typical application of the AVE240C-48S12 series power supply.

Figure 15 Typical application

- C1: 100µF/100V electrolytic capacitor, P/N: UPW2A101MHD (Nichicon) or equivalent caps
- C2: 1µF/100V X7R ceramic capacitor, P/N: C3225X7R2A105KT0L0U (TDK) or equivalent caps
- C3: 1µF/25V X7R ceramic capacitor, P/N: C3225X7R1E105KT000N (TDK) or equivalent caps
- C4: 470µF electrolytic capacitor, P/N: UUD1H471MNL1GS (Nichicon) or equivalent caps
- Fuse: External fast blow fuse with a rating of 20A. The recommended fuse model is 314020P MXP from LITTLEFUSE.

AVE240C-48S12 Page 19

Remote ON/OFF

Either positive or negative remote ON/OFF logic is available in AVE240C-48S12. The logic is CMOS and TTL compatible. The following figure is the detailed internal circuit and reference in AVE240C-48S12.

Figure 16 Remote ON/OFF internal diagram

Rev.10.13.14_#1.1 AVE240C-48S12 Page 20

Trim Characteristics

Connecting an external resistor between Trim pin and V_o - pin will decrease the output voltage. While connecting it between Trim and V_o + will increase the output voltage. The following equations determine the external resistance to obtain the trimmed output voltage.

$$R_{adj-down} = \frac{1}{\Delta} - 2(k\Omega)$$

$$R_{adj-up} = \frac{V_{nom} \times (1 + \Delta)}{1.225 \times \Delta} - \frac{1 + 2\Delta}{\Delta} (k\Omega)$$

$$\Delta = \frac{|V_{nom} - V_{desired}|}{V_{nom}}$$

 V_{nom} : Nominal output voltage.

For example, to get 13.2V output, the trimming resistor is

 $R_{adj-up} = \frac{12 \times (1+0.1)}{1.225 \times 0.1} - \frac{1+2 \times 0.1}{0.1} (k\Omega) = 95.75k\Omega$

The output voltage can also be trimmed by potential applied at the Trim pin.

 $V_o = (V_{trim} + 1.225) \times 9.8$

Where V_{tim} is the potential applied at the Trim pin, and V_o is the desired output voltage.

Figure 17 Trim up

Figure 18 Trim down

When trimming up, the output current should be decreased accordingly so as not to exceed the maximum output power and the minimum input voltage should be increased as shown in Figure 19.

Figure 19 Output trim voltage vs. input voltage

Input Ripple & Output Ripple & Noise Test Configuration

Figure 20 Input ripple & inrush current, output ripple & noise test configuration

Vdc: DC power supply

L1: 12µH

Cin: 220µF/100V typical

C1 ~ C4: See Figure 15

Note: It is recommended to use a coaxial cable with series 50Ω resistor and 0.68μ F ceramic capacitor or a ground ring of probe to test output ripple & noise.

AVE240C-48S12 Page 22

Sense Characteristics

If the load is far from the unit, connect S+ and S- to the terminal of the load respectively to compensate the voltage drop on the transmission line. See Figure 18.

If the sense compensate function is not necessary, connect S+ to V_o+ and S- to V_o- directly.

Soldering

The product is intended for standard manual or wave soldering.

When wave soldering is used, the temperature on pins is specified to maximum 260°C for maximum 7s.

When soldering by hand, the iron temperature should be maintained at 300° C ~ 380° C and applied to the converter pins for less than 10s. Longer exposure can cause internal damage to the converter.

Hazardous Substances Announcement (RoHS of China)

Dorto	Hazardous Substances						
Parts	Pb	Hg	Cd	Cr ⁶⁺	PBB	PBDE	
AVE240C-48S12-14L	х	х	х	х	х	х	
AVE240C-48S12P-14L	х	х	х	х	Х	х	
AVE240C-48S12-14Y	\checkmark	х	х	х	Х	х	
AVE240C-48S12P-14Y	\checkmark	x	х	x	х	х	

x: Means the content of the hazardous substances in all the average quality materials of the part is within the limits specified in SJ/T-11363-2006

 $\sqrt{}$: Means the content of the hazardous substances in at least one of the average quality materials of the part is outside the limits specified in SJ/T11363-2006

Artesyn Embedded Technologies has been committed to the design and manufacturing of environment-friendly products. It will reduce and eventually eliminate the hazardous substances in the products through unremitting efforts in research. However, limited by the current technical level, the following parts still contain hazardous substances due to the lack of reliable substitute or mature solution:

1. Solders (including high-temperature solder in parts) contain plumbum.

2. Glass of electric parts contains plumbum.

3. Copper alloy of pins contains plumbum

WORLDWIDE OFFICES

Americas

2900 S.Diablo Way Tempe, AZ 85282 USA +1 888 412 7832 Europe (UK) Waterfront Business Park Merry Hill, Dudley West Midlands, DY5 1LX United Kingdom +44 (0) 1384 842 211 Asia (HK) 14/F, Lu Plaza 2 Wing Yip Street Kwun Tong, Kowloon Hong Kong +852 2176 3333

www.artesyn.com

For more information: www.artesyn.com/power For support: productsupport.ep@artesyn.com

While every precaution has been taken to ensure accuracy and completeness in this literature, Artesyn Embedded Technologies assumes no responsibility, and disclaims all liability for damages resulting from use of this information or for any errors or omissions. Artesyn Embedded Technologies, Artesyn and the Artesyn Embedded Technologies logo are trademarks and service marks of Artesyn Technologies, Inc. All other names and logos referred to are trade names, trademarks, or registered trademarks of their respective owners. © 2014 All rights reserved.