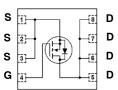


MOSFET - N-Channel, POWERTRENCH®, DUAL COOL® 56 Shielded Gate 100 V, 60 A, 7.5 mΩ

FDMS86101DC

General Description

This N-Channel MOSFET is produced using **onsemi's** advanced POWERTRENCH® process that incorporates Shielded Gate technology. Advancements in both silicon and DUAL COOL® package technologies have been combined to offer the lowest $r_{DS(on)}$ while maintaining excellent switching performance by extremely low Junction-to-Ambient thermal resistance.

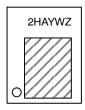

Features

- Shielded Gate MOSFET Technology
- DUAL COOL Top Side Cooling PQFN package
- Max $R_{DS(on)} = 7.5 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 14.5 \text{ A}$
- Max $R_{DS(on)} = 12 \text{ m}\Omega$ at $V_{GS} = 6 \text{ V}$, $I_D = 11.5 \text{ A}$
- High performance technology for extremely low R_{DS(on)}
- 100% UIL Tested
- RoHS Compliant

Typical Applications

- Primary DC-DC MOSFET
- Secondary Synchronous Rectifier
- Load Switch

ELECTRICAL CONNECTION



N-Channel MOSFET

DFN8 5.1x6.15 (Dual Cool 56) CASE 506EG

MARKING DIAGRAM

2H = Specific Device Code A = Assembly Location

Y = Year

W = Work Week

Z = Assembly Lot Code

ORDERING INFORMATION

See detailed ordering, marking and shipping information on page 2 of this data sheet.

PACKAGE MARKING AND ORDERING INFORMATION

Device Marking	Device	Package	Reel Size	Tape Width	Shipping [†]
86101	FDMS86101DC	UDFN8	13"	12 mm	3000 Units/ Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MOSFET MAXIMUM RATINGS ($T_A = 25^{\circ}C$ unless otherwise noted)

Symbol	Parameter				Ratings	Units
V_{DS}	Drain to Source	Voltage			100	V
V _{GS}	Gate to Source V	/oltage			±20	V
I _D	Drain Current	-Continuous	T _C = 25°C		60	Α
		-Continuous	T _A = 25°C	(Note 1a)	14.5	
		-Pulsed			200	
E _{AS}	Single Pulse Ava	lanche Energy		(Note 3)	216	mJ
P_{D}	Power Dissipatio	n	T _C = 25°C		125	W
	Power Dissipatio	n	T _A = 25°C	(Note 1a)	3.2	
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to +150	°C	

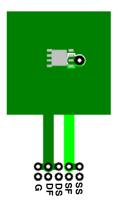
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Parameter	Test Conditions	Min.	Тур.	Max.	Units		
OFF CHARACTERISTICS							
Drain to Source Breakdown Voltage	$I_D = 250 \mu\text{A}, V_{GS} = 0 \text{V}$	100			٧		
Breakdown Voltage Temperature Coefficient	I_D = 250 μ A, referenced to 25°C		70		mV/°C		
Zero Gate Voltage Drain Current	V _{DS} = 80 V, V _{GS} = 0 V			1	μΑ		
Gate to Source Leakage Current	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$			±100	nA		
ACTERISTICS							
Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	2	2.7	4	V		
Gate to Source Threshold Voltage Temperature Coefficient	I_D = 250 μA, referenced to 25°C		-10		mV/°C		
Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 14.5 A		6	7.5	mΩ		
	V _{GS} = 6 V, I _D = 11.5 A		8.3	12			
	V _{GS} = 10 V, I _D = 14.5 A, T _J = 125°C		10	13]		
Forward Transconductance	V _{DD} = 10 V, I _D = 14.5 A		44		S		
CHARACTERISTICS		•	•		•		
Input Capacitance	V _{DS} = 50 V, V _{GS} = 0 V, f = 1 MHz		2354	3135	pF		
Output Capacitance]		467	625	pF		
Reverse Transfer Capacitance			23	35	pF		
Gate Resistance		0.1	1.4	3	Ω		
	Drain to Source Breakdown Voltage Breakdown Voltage Temperature Coefficient Zero Gate Voltage Drain Current Gate to Source Leakage Current ACTERISTICS Gate to Source Threshold Voltage Gate to Source Threshold Voltage Temperature Coefficient Static Drain to Source On Resistance Forward Transconductance CHARACTERISTICS Input Capacitance Output Capacitance Reverse Transfer Capacitance	ACTERISTICSDrain to Source Breakdown Voltage $I_D = 250 \mu A$, $V_{GS} = 0 \text{ V}$ Breakdown Voltage Temperature Coefficient $I_D = 250 \mu A$, referenced to 25°CZero Gate Voltage Drain Current $V_{DS} = 80 \text{ V}$, $V_{GS} = 0 \text{ V}$ Gate to Source Leakage Current $V_{GS} = \pm 20 \text{ V}$, $V_{DS} = 0 \text{ V}$ ACTERISTICS $V_{GS} = V_{DS}$, $I_D = 250 \mu A$ Gate to Source Threshold Voltage $V_{GS} = V_{DS}$, $I_D = 250 \mu A$ Gate to Source Threshold Voltage Temperature Coefficient $I_D = 250 \mu A$, referenced to 25°CStatic Drain to Source On Resistance $V_{GS} = 10 \text{ V}$, $I_D = 14.5 \text{ A}$ $V_{GS} = 6 \text{ V}$, $I_D = 11.5 \text{ A}$ $V_{GS} = 6 \text{ V}$, $I_D = 14.5 \text{ A}$ $V_{DD} = 10 \text{ V}$, $I_D = 14.5 \text{ A}$ $V_{DD} = 10 \text{ V}$, $V_{DD} = 14.5 \text{ A}$ CHARACTERISTICSInput Capacitance $V_{DS} = 50 \text{ V}$, $V_{GS} = 0 \text{ V}$, $V_{GS} = 0 \text{ V}$, $V_{GS} = 10 \text{ MHz}$ Output Capacitance $V_{DD} = 10 \text{ Capacitance}$ Reverse Transfer Capacitance	ACTERISTICS Drain to Source Breakdown Voltage $I_D = 250 \mu A$, $V_{GS} = 0 V$ 100 Breakdown Voltage Temperature Coefficient $I_D = 250 \mu A$, referenced to $25^{\circ}C$ Zero Gate Voltage Drain Current $V_{DS} = 80 V$, $V_{GS} = 0 V$ Gate to Source Leakage Current $V_{GS} = \pm 20 V$, $V_{DS} = 0 V$ ACTERISTICS Gate to Source Threshold Voltage $V_{GS} = V_{DS}, I_D = 250 \mu A$ 2 Gate to Source Threshold Voltage Temperature Coefficient $I_D = 250 \mu A$, referenced to $25^{\circ}C$ Static Drain to Source On Resistance $V_{GS} = 10 V$, $I_D = 14.5 A$ $V_{GS} = 10 V$, $I_D = 14.5 A$ $V_{GS} = 10 V$, $I_D = 14.5 A$ $V_{DD} = 10 V$, $I_D = 14.5 A$ CHARACTERISTICS Input Capacitance $V_{DS} = 50 V$, $V_{GS} = 0 V$, $V_{SS} = 0 V$, $V_{SS} = 10 V$, V	ACTERISTICS Drain to Source Breakdown Voltage $I_D = 250 \mu A$, $V_{GS} = 0 V$ 100 Breakdown Voltage Temperature Coefficient $I_D = 250 \mu A$, referenced to 25°C 70 Zero Gate Voltage Drain Current $V_{DS} = 80 \text{ V}$, $V_{GS} = 0 \text{ V}$ Gate to Source Leakage Current $V_{GS} = \pm 20 \text{ V}$, $V_{DS} = 0 \text{ V}$ ACTERISTICS Gate to Source Threshold Voltage $V_{GS} = V_{DS}$, $I_D = 250 \mu A$ 2 2.7 Gate to Source Threshold Voltage Temperature Coefficient $I_D = 250 \mu A$, referenced to 25°C -10 Static Drain to Source On Resistance $V_{GS} = 10 \text{ V}$, $I_D = 14.5 \text{ A}$ 6 $V_{GS} = 6 \text{ V}$, $I_D = 11.5 A$ 8.3 $V_{GS} = 10 \text{ V}$, $I_D = 14.5 \text{ A}$ 44 CHARACTERISTICS Input Capacitance $V_{DS} = 50 \text{ V}$, $V_{GS} = 0 \text{ V}$, $f = 1 \text{ MHz}$ 2354 Output Capacitance 467 Reverse Transfer Capacitance 23	ACTERISTICS Drain to Source Breakdown Voltage $I_D = 250 \mu A, V_{GS} = 0 \text{ V}$ 100 Breakdown Voltage Temperature Coefficient $I_D = 250 \mu A, \text{ referenced to } 25^{\circ}\text{C}$ 70 Zero Gate Voltage Drain Current $V_{DS} = 80 \text{ V}, V_{GS} = 0 \text{ V}$ 1 Gate to Source Leakage Current $V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$ ± 100 ACTERISTICS Gate to Source Threshold Voltage $V_{GS} = V_{DS}, I_D = 250 \mu A$ 2 2.7 4 Gate to Source Threshold Voltage Temperature Coefficient $I_D = 250 \mu A, \text{ referenced to } 25^{\circ}\text{C}$ -10 -10 Static Drain to Source On Resistance $V_{GS} = 10 \text{ V}, I_D = 14.5 \text{ A}$ 6 7.5 V _{GS} = 6 V, I _D = 11.5 A 8.3 12 V _{GS} = 10 V, I _D = 14.5 A, T _J = 125^{\circ}\text{C} 10 13 Forward Transconductance $V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$ 2354 3135 CHARACTERISTICS Input Capacitance $V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$ 2354 3135 Output Capacitance $V_{DS} = 50 \text{ V}, V_{DS} = $		

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
SWITCHIN	IG CHARACTERISTICS				ı	
td _(ON)	Turn – On Delay Time	V _{DD} = 50 V, I _D = 14.5 A,		14	25	ns
t _r	Rise Time	V_{GS} = 10 V, R_{GEN} = 6 Ω		8.2	17	ns
t _{D(OFF)}	Turn – Off Delay Time			25	40	ns
t _f	Fall Time			5.5	11	ns
Q _{g(TOT)}	Total Gate Charge	V _{GS} = 0 V to 10 V		31	44	nC
	Total Gate Charge	V _{GS} = 0 V to 5 V		18	25	nC
Q _{gs}	Gate to Source Gate Charge	V _{DD} = 50 V,		8.3		nC
Q _{gd}	Gate to Drain "Miller" Charge	I _D = 14.5 A		7		nC
DRAIN-SC	DURCE DIODE CHARACTERISTICS					
V_{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_S = 2.7 \text{ A}$ (Note 2)		0.71	1.2	V
		V _{GS} = 0 V, I _S = 14.5 A (Note 2)		0.78	1.3	
t _{rr}	Reverse Recovery Time			54	87	ns
Q _{rr}	Reverse Recovery Charge	I _F = 14.5 A, di/dt = 100 A/μs		62	99	nC


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

THERMAL CHARACTERISTICS

Symbol	Parameter		Ratings	Units
$R_{\theta JC}$	Thermal Resistance, Junction to Case	(Top Source)	2.3	°C/W
$R_{\theta JC}$	Thermal Resistance, Junction to Case	(Bottom Drain)	1.0	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1a)	38	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1b)	81	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1c)	27	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1d)	34	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1e)	16	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1f)	19	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1g)	26	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1h)	61	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1i)	16	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1j)	23	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1k)	11	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1I)	13	

NOTES:

R_{θJA} is determined with the device mounted on a FR-4 board using a specified pad of 2 oz copper as shown below. R_{θJC} is guaranteed by design while R_{θCA} is determined by the user's board design.

a) 38°C/W when mounted on a 1 in² pad of 2 oz copper.

b) 81°C/W when mounted on a minimum pad of 2 oz copper.

- c) Still air, 20.9×10.4×12.7 mm Aluminum Heat Sink, 1 in² pad of 2 oz copper
- d) Still air, 20.9×10.4×12.7 mm Aluminum Heat Sink, minimum pad of 2 oz copper
- e) Still air, 45.2×41.4×11.7 mm Aavid Thermalloy Part # 10-L41B-11 Heat Sink, 1 in² pad of 2 oz copper
- f) Still air, 45.2×41.4×11.7 mm Aavid Thermalloy Part # 10-L41B-11 Heat Sink, minimum pad of 2 oz copper
- g) .200FPM Airflow, No Heat Sink, 1 in2 pad of 2 oz copper
- h) .200FPM Airflow, No Heat Sink, minimum pad of 2 oz copper
- i) .200FPM Airflow, 20.9×10.4×12.7 mm Aluminum Heat Sink, 1 in² pad of 2 oz copper
- j) .200FPM Airflow, 20.9×10.4×12.7 mm Aluminum Heat Sink, minimum pad of 2 oz copper
- k) .200FPM Airflow, 45.2×41.4×11.7 mm Aavid Thermalloy Part # 10-L41B-11 Heat Sink, 1 in2 pad of 2 oz copper
- l) .200FPM Airflow, 45.2×41.4×11.7 mm Aavid Thermalloy Part # 10-L41B-11 Heat Sink, minimum pad of 2 oz copper
- 2. Pulse Test: Pulse Width $< 300 \mu s$, Duty cycle < 2.0%.
- 3. Starting $T_J = 25^{\circ}C$; N-ch: L = 0.3 mH, $I_{AS} = 38$ A, $V_{DD} = 90$ V, $V_{GS} = 10$ V.

TYPICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

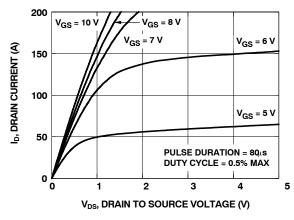


Figure 1. On Region Characteristics

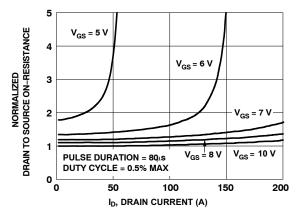


Figure 2. Normalized On-Resistance vs. Drain Current and Gate Voltage

TYPICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

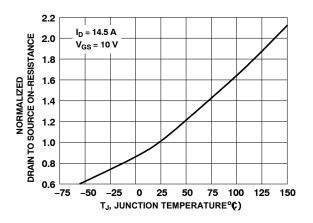


Figure 3. Normalized On Resistance vs. Junction Temperature

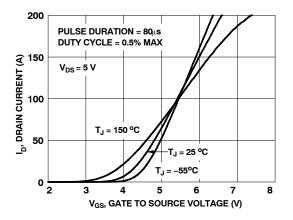


Figure 5. Transfer Characteristics

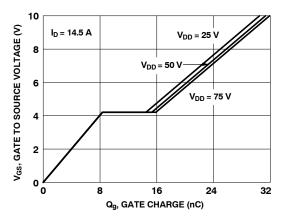


Figure 7. Gate Charge Characteristics

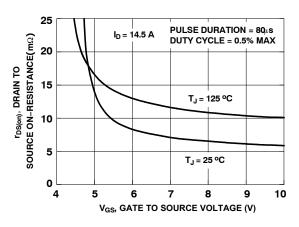


Figure 4. On-Resistance vs. Gate to Source Voltage

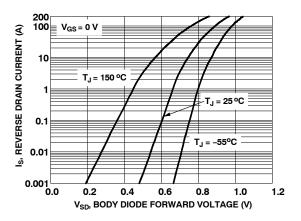


Figure 6. Source to Drain Diode Forward Voltage vs. Source Current

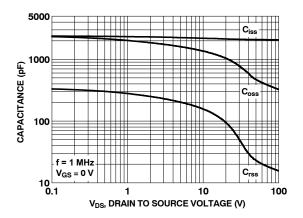


Figure 8. Capacitance vs. Drain to Source Voltage

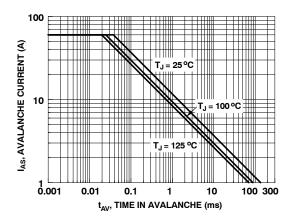


Figure 9. Unclamped Inductive Switching Capability

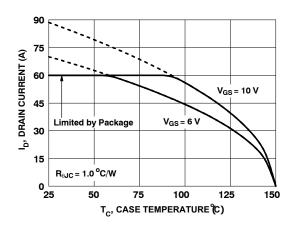


Figure 10. Maximum Continuous Drain Current vs. Case Temperature

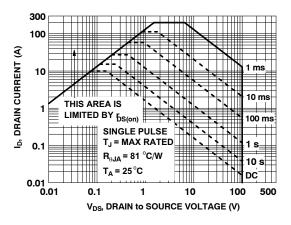


Figure 11. Forward Bias Safe Operating Area

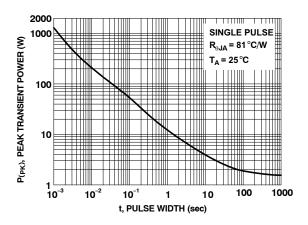


Figure 12. Single Pulse Maximum Power Dissipation

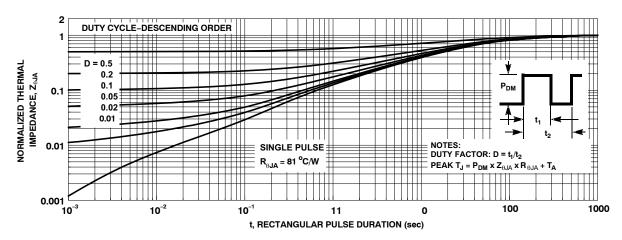
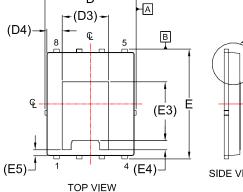
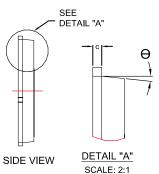



Figure 13. Junction-to-Case Transient Thermal Response Curve

POWERTRENCH and DUAL COOL are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.


DFN8 5x6.15, 1.27P, DUAL COOL CASE 506EG ISSUE D

DATE 25 AUG 2020

SEE

DETAIL "B"

// 0.10 C

NOTES:

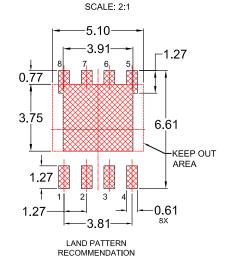
Θ

Δ1

Ċ

SEATING **PLANE**

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. COPLANARITY APPLIES TO THE EXPOSED PADS AS WELL AS THE TERMINALS.
- DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.
- SEATING PLANE IS DEFINED BY THE TERMINALS. "A1" IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.


	FRONT VIEW	► DETAIL "B"	0.10 C
(E7) (E6) (E6)	1/2	-b1 (8X) -b (4X) b (4X)	0.7
	 		1.

FRONT VIEW

GENERIC MARKING DIAGRAM*

BOTTOM VIEW

DETAIL "B"

*FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

DIM	IV	IILL I MET	ERS		
Diw	MIN.	NOM.	MAX.		
Α	0.85	0.90	0.95		
A1	-	-	0.05		
A2	ı	-	0.05		
b	0.31	0.41	0.51		
b1	0,21	0.31	0.41		
С	0.20	0.25	0.30		
D	4.90	5.00	5,10		
D1	4.80	4.90	5.00		
D2	3.67	3.82	3.97		
D3		2.60 REF			
D4	0.86 REF				
Е	6.05	6.15	6.25		
E1	5.70	5.80	5.90		
E2	3.38	3.48	3.58		
E3	;	3.30 REF	-		
E4		0.50 REF	•		
E5	Ü	0.34 REF	:		
E6	(0.30 REF			
E7		0.52 REF	:		
Ф	1.27 BSC				
1/2e	0,635 BSC				
K	1.30	1.40	1.50		
L	0.56	0.66	0.76		
L1	0.52	0.62	0.72		
Ð	0°		12°		

XXXX = Specific Device Code

= Assembly Location

= Year

= Work Week

= Assembly Lot Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "=", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON84257G	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	DFN8 5x6.15, 1.27P, DUAL COOL		PAGE 1 OF 1	

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales