ON Semiconductor ### Is Now To learn more about onsemi™, please visit our website at www.onsemi.com onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, # **TinyLogic ULP-A Buffer with Three-State Output** # **NC7SV126** The NC7SV126 is a single 3–State buffer in tiny footprint packages. The device is designed to operate for $V_{CC} = 0.9 \text{ V}$ to 3.6 V. #### **Features** - Designed for 0.9 V to 3.6 V V_{CC} Operation - 1.8 ns t_{PD} at 3.3 V (Typ) - Inputs/Outputs Over-Voltage Tolerant up to 3.6 V - I_{OFF} Supports Partial Power Down Protection - Source/Sink 24 mA at 3.3 V - Available in SC/SC-88A and MicroPak™ Packages - These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant Figure 1. Pinout (Top View) Figure 2. Logic Symbol # ON #### ON Semiconductor® #### www.onsemi.com #### MARKING DIAGRAM SIP6 1.45 x1.0 MicroPak CASE 127EB CC = Specific Device Code KK = 2-Digit Lot Run Traceability Code XY = 2-Digit Date Code = Assembly Plant Code SC-88A CASE 419A-02 XXX = Specific Device Code M = Date Code ■ Pb-Free Package #### **ORDERING INFORMATION** See detailed ordering, marking and shipping information in the package dimensions section on page 6 of this data sheet. #### PIN ASSIGNMENT | Pin | SC88A | MicroPak | |-----|-----------------|-----------------| | 1 | OE | OE | | 2 | Α | Α | | 3 | GND | GND | | 4 | Υ | Υ | | 5 | V _{CC} | NC | | 6 | _ | V _{CC} | #### **FUNCTION TABLE** | Inp | Output | | | |-----|--------|---|--| | OE | Α | Υ | | | Н | L | L | | | Н | Н | Н | | | L | Х | Z | | X = Don't Care #### **MAXIMUM RATINGS** | Symbol | Characteristics | | Value | Unit | |-------------------------------------|---|---|---|------| | V _{CC} | DC Supply Voltage | | -0.5 to +4.3 | V | | V _{IN} | DC Input Voltage | | -0.5 to +4.3 | V | | V _{OUT} | | -Mode (High or Low State)
Tri-State Mode (Note 1)
r-Down Mode (V _{CC} = 0 V) | -0.5 to V _{CC} + 0.5
-0.5 to +4.3
-0.5 to +4.3 | V | | I _{IK} | DC Input Diode Current | V _{IN} < GND | -50 | mA | | I _{OK} | DC Output Diode Current | V _{OUT} < GND | -50 | mA | | I _{OUT} | DC Output Source/Sink Current | | ±50 | mA | | I _{CC} or I _{GND} | DC Supply Current per Supply Pin or Ground Pin | | ±50 | mA | | T _{STG} | Storage Temperature Range | | -65 to +150 | °C | | TL | Lead Temperature, 1 mm from Case for 10 Seconds | | 260 | °C | | TJ | Junction Temperature Under Bias | | +150 | °C | | θJA | Thermal Resistance (Note 2) | SC-88A
MicroPak | 377
154 | °C/W | | P _D | Power Dissipation in Still Air | SC-88A
MikroPak | 332
812 | mW | | MSL | Moisture Sensitivity | | Level 1 | - | | F _R | Flammability Rating | Oxygen Index: 28 to 34 | UL 94 V-0 @ 0.125 in | - | | V _{ESD} | ESD Withstand Voltage (Note 3) | Human Body Model
Charged Device Model | 2000
1000 | V | | I _{Latchup} | Latchup Performance (Note 4) | _ | ±100 | mA | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. - Applicable to devices with outputs that may be tri-stated. Measured with minimum pad spacing on an FR4 board, using 10 mm-by-1 inch, 2 ounce copper trace no air flow per JESD51-7. HBM tested to EIA / JESD22-A114-A. CDM tested to JESD22-C101-A. JEDEC recommends that ESD qualification to EIA/JESD22-A115A. (Machine Model) be discontinued. - 4. Tested to EIA/JESD78 Class II. #### RECOMMENDED OPERATING CONDITIONS | Symbol | Param | Min | Max | Unit | | |---------------------------------|-------------------------------------|---|-------------|-------------------------------|------| | V _{CC} | Positive DC Supply Voltage | | 0.9 | 3.6 | V | | V _{IN} | DC Input Voltage | | 0 | 3.6 | ٧ | | V _{OUT} | DC Output Voltage | Active-Mode (High or Low State)
Tri-State Mode (Note 1)
Power-Down Mode (V _{CC} = 0 V) | 0
0
0 | V _{CC}
3.6
3.6 | | | T _A | Operating Temperature Range | | -40 | +85 | °C | | t _r , t _f | Input Transition Rise and Fall Time | V _{CC} = 3.3 V ±0.3 V | 0 | 10 | ns/V | Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability. #### DC ELECTRICAL CHARACTERISTICS | | | | | т | A = 25° | С | $T_A = -40^{\circ}$ | C to +85°C | | |-----------------|-------------------|-------------------------------|---------------------|------------------------|-----------------------|------------------------|------------------------|------------------------|------| | Symbol | Parameter | Condition | V _{CC} (V) | Min | Тур | Max | Min | Max | Unit | | V _{IH} | High-Level Input | | 0.9 | - | 0.5 | - | _ | _ | V | | | Voltage | | 1.1 to 1.3 | 0.65 x V _{CC} | _ | - | 0.65 x V _{CC} | _ | 1 | | | | | 1.4 to 1.6 | 0.65 x V _{CC} | - | - | 0.65 x V _{CC} | - | | | | | | 1.65 – 1.95 | 0.65 x V _{CC} | - | - | 0.65 x V _{CC} | - | 1 | | | | | 2.3 to < 2.7 | 1.6 | - | - | 1.6 | - | 1 | | | | | 2.7 to 3.6 | 2.0 | - | - | 2.0 | - | | | V _{IL} | Low-Level Input | | 0.9 | - | 0.5 | - | - | - | V | | | Voltage | | 1.1 to 1.3 | - | - | 0.35 x V _{CC} | - | 0.35 x V _{CC} | 1 | | | | | 1.4 to 1.6 | - | _ | 0.35 x V _{CC} | - | 0.35 x V _{CC} | 1 | | | | | 1.65 – 1.95 | - | _ | 0.35 x V _{CC} | - | 0.35 x V _{CC} | 1 | | | | | 2.3 to < 2.7 | - | _ | 0.7 | - | 0.7 | 1 | | | | | 2.7 to 3.6 | - | _ | 0.8 | _ | 0.8 | 1 | | V _{OH} | High-Level Output | $V_{IN} = V_{IH}$ or V_{IL} | | | | | | | V | | · · · | Voltage | I _{OH} = -100 μA | 0.9 | - | V _{CC} - 0.1 | - | - | - | | | | | | 1.1 to 3.6 | V _{CC} – 0.1 | _ | _ | V _{CC} - 0.1 | _ | 1 | | | | | 1.4 to 1.6 | V _{CC} - 0.1 | - | - | V _{CC} - 0.1 | - | 1 | | | | | 1.65 to 1.95 | V _{CC} - 0.2 | - | _ | V _{CC} - 0.2 | - | 1 | | | | | 2.3 to < 2.7 | V _{CC} - 0.2 | - | - | V _{CC} - 0.2 | - | 1 | | | | | 2.7 to 3.6 | V _{CC} - 0.2 | _ | - | V _{CC} - 0.2 | - | 1 | | | | I _{OH} = −2 mA | 1.1 o 1.3 | 0.75 x V _{CC} | _ | - | 0.75 x V _{CC} | _ | 1 | | | | I _{OH} = -4 mA | 1.4 to 1.6 | 0.75 x V _{CC} | _ | - | 0.75 x V _{CC} | - | 1 | | | | I _{OH} = -6 mA | 1.65 to 1.95 | 1.25 | _ | - | 1.25 | _ | 1 | | | | | 2.3 to < 2.7 | 2.0 | _ | - | 2.0 | _ | 1 | | | | I _{OH} = -12 mA | 2.3 to < 2.7 | 1.8 | _ | _ | 1.8 | _ | 1 | | | | | 2.7 to 3.6 | 2.2 | _ | _ | 2.2 | _ | | | | | I _{OH} = -18 mA | 2.3 to < 2.7 | 1.7 | _ | _ | 1.7 | _ | 1 | | | | | 2.7 to 3.6 | 2.4 | _ | _ | 2.4 | _ | 1 | | | | I _{OH} = -24 mA | 2.7 to 3.6 | 2.2 | _ | _ | 2.2 | _ | | | V _{OL} | Low-Level Output | $V_{IN} = V_{IH}$ or V_{IL} | | | | | | | V | | 02 | Voltage | I _{OL} = 100 μA | 0.9 | - | 0.1 | _ | _ | _ | | | | | , | 1.1 to 3.6 | - | _ | 0.1 | _ | 0.1 | ٧ | | | | | 1.4 to 1.6 | - | _ | 0.1 | _ | 0.1 | V | | | | | 1.65 to 1.95 | - | _ | 0.2 | _ | 0.2 | V | | | | | 2.3 to < 2.7 | - | _ | 0.2 | _ | 0.2 | V | | | | | 2.7 to 3.6 | - | _ | 0.2 | _ | 0.2 | V | | | | I _{OL} = 2 mA | 1.1 o 1.3 | - | _ | 0.25 x V _{CC} | _ | 0.25 x V _{CC} | V | | | | I _{OL} = 4 mA | 1.4 to 1.6 | _ | _ | 0.25 x V _{CC} | _ | 0.25 x V _{CC} | V | | | | I _{OL} = 6 mA | 1.65 to 1.95 | - | _ | 0.3 | _ | 0.3 | | | | | I _{OL} = 12 mA | 2.3 to < 2.7 | _ | - | 0.4 | _ | 0.4 | | | | | | 2.7 to 3.6 | - | _ | 0.4 | - | 0.4 | | | | | I _{OL} = 18 mA | 2.3 to < 2.7 | _ | _ | 0.6 | _ | 0.6 | | | | | | 2.7 to 3.6 | _ | _ | 0.4 | _ | 0.4 | | | | | I _{OL} = 24 mA | 2.7 to 3.6 | - | _ | 0.55 | _ | 0.55 | 1 | #### DC ELECTRICAL CHARACTERISTICS (continued) | | | | | T _A = 25°C | | T _A = -40°C to +85°C | | | | |------------------|-----------------------------------|--|---------------------|-----------------------|-----|---------------------------------|-----|------|------| | Symbol | Parameter | Condition | V _{CC} (V) | Min | Тур | Max | Min | Max | Unit | | I _{IN} | Input Leakage
Current | V _{IN} = 3.6 V or GND | 0.9 to 3.6 | - | - | ±0.1 | - | ±0.5 | μΑ | | I _{OZ} | 3-State Output
Leakage Current | V _{OUT} = 0 V to 3.6 V | 0.9 to 3.6 | - | - | ±0.5 | - | ±0.5 | μΑ | | I _{OFF} | Power Off Leakage
Current | V _{IN} = 3.6 V or
V _{OUT} = 3.6 V | 0 | _ | - | 0.5 | - | 0.5 | μΑ | | Icc | Quiescent Supply
Current | V _{IN} = V _{CC} or GND | 0.9 to 3.6 | - | - | 0.9 | - | 0.9 | μΑ | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. #### **AC ELECTRICAL CHARACTERISTICS** | | | | | ٦ | Γ _A = 25°(| 2 | T _A = -40°C | C to +85°C | | |-------------------------------------|------------------------------|---|---------------------|-----|-----------------------|------|------------------------|------------|------| | Symbol | Parameter | Condition | V _{CC} (V) | Min | Тур | Max | Min | Max | Unit | | t _{PLH} , t _{PHL} | Propagation Delay, | $R_L = 1 M\Omega$, $C_L = 15 pF$ | 0.9 | - | 17.6 | - | - | - | ns | | | A to Y (Figures 3 and 4) | $R_L = 2 \text{ k}\Omega$, $C_L = 15 \text{ pF}$ | 1.10 to 1.30 | - | 6.3 | 12.6 | - | 14.9 | | | | | | 1.40 to 1.60 | - | 3.8 | 5.3 | - | 5.7 | | | | | $R_L = 500 \ \Omega, \ C_L = 30 \ pF$ | 1.65 to 1.95 | - | 3.0 | 4.3 | - | 4.6 | | | | | | 2.3 to 2.7 | - | 2.1 | 2.8 | - | 3.0 | | | | | | 2.7 to 3.6 | - | 1.8 | 2.6 | - | 2.8 | | | t _{PZH} , t _{PZL} | | $R_1 = R_L = 1 \text{ k}\Omega$ | 0.9 | - | 19.7 | - | - | - | ns | | | OE to Y
(Figures 3 and 4) | | 1.10 to 1.30 | - | 6.0 | 9.7 | - | 16.4 | | | | , | | 1.40 to 1.60 | - | 3.5 | 6.0 | - | 7.5 | | | | | | 1.65 to 1.95 | - | 2.7 | 4.5 | - | 5.0 | | | | | | 2.3 to 2.7 | - | 2.0 | 3.0 | - | 3.4 | | | | | | 2.7 to 3.6 | - | 1.7 | 2.6 | - | 2.9 | | | t_{PHZ} , t_{PLZ} | Output Disable Time, | C _L = 30 pF | 0.9 | - | 10.3 | - | - | - | ns | | | OE to Y
(Figures 3 and 4) | $R_1 = R_L = 1 \text{ k}\Omega$ | 1.10 to 1.30 | - | 4.9 | 9.5 | - | 14.0 | | | | , | | 1.40 to 1.60 | - | 3.3 | 5.5 | - | 7.0 | | | | | | 1.65 to 1.95 | - | 3.0 | 5.6 | - | 5.8 | | | | | | 2.3 to 2.7 | - | 2.5 | 4.2 | - | 5.0 | 1 | | | | | 2.7 to 3.6 | - | 2.9 | 3.9 | - | 4.2 | | #### **CAPACITIVE CHARACTERISTICS** | Symbol | Parameter | Test Condition | Typical (T _A = 25°C) | Unit | |------------------|--|---|---------------------------------|------| | C _{IN} | Input Capacitance | V _{CC} = 0 V | 2.0 | pF | | C _{OUT} | Output Capacitance | V _{CC} = 0 V | 4.5 | pF | | C _{PD} | Power Dissipation Capacitance (Note 5) | 10 MHz, V_{CC} = 0.9 to 3.6 V, V_{IN} = 0 V or V_{CC} | 20 | pF | ^{5.} C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation I_{CC(OPR)} = C_{PD} • V_{CC} • f_{in} + I_{CC}. C_{PD} is used to determine the no–load dynamic power consumption: P_D = C_{PD} • V_{CC}² • f_{in} + I_{CC} • V_{CC}. | Test | Switch Position | |-------------------------------------|---------------------| | t _{PLH} / t _{PHL} | Open | | t _{PLZ} / t _{PZL} | 2 x V _{CC} | | t _{PHZ} / t _{PZH} | GND | C_L includes probe and jig capacitance R_T is Z_{OUT} of pulse generator (typically 50 Ω) f=1 MHz Figure 3. Test Circuit | | | , | | | |---------------------|---------------------|-------------------------------------|---|--------------------| | V _{CC} , V | V _{mi} , V | t _{PLH} , t _{PHL} | t _{PZL} , t _{PLZ} , t _{PZH} , t _{PHZ} | V _Y , V | | 0.9 | V _{CC} / 2 | V _{CC} / 2 | V _{CC} / 2 | 0.1 | | 1.1 to 1.3 | V _{CC} / 2 | V _{CC} / 2 | V _{CC} / 2 | 0.1 | | 1.4 to 1.6 | V _{CC} / 2 | V _{CC} / 2 | V _{CC} / 2 | 0.1 | | 1.65 to 1.95 | V _{CC} / 2 | V _{CC} / 2 | V _{CC} / 2 | 0.15 | | 2.3 to 2.7 | V _{CC} / 2 | V _{CC} / 2 | V _{CC} / 2 | 0.15 | | 3.0 to 3.6 | 1.5 | 1.5 | 1.5 | 0.3 | Figure 4. Switching Waveforms #### **ORDERING INFORMATION** | Device | Package | Marking | Pin 1 Orientation
(See below) | Shipping [†] | |-------------|----------|---------|----------------------------------|-----------------------| | NC7SV126P5X | SC-88A | V26 | Q4 | 3000 / Tape & Reel | | NC7SV126L6X | MicroPak | H7 | Q4 | 5000 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. #### Pin 1 Orientation in Tape and Reel #### Direction of Feed #### **PACKAGE DIMENSIONS** SIP6 1.45X1.0 CASE 127EB ISSUE O - 1, CONFORMS TO JEDEC STANDARD MO-252 VARIATION UAAD - 2. DIMENSIONS ARE IN MILLIMETERS - 3. DRAWING CONFORMS TO ASME Y14.5M-2009 4. PIN ONE IDENTIFIER IS 2X LENGTH OF ANY OTHER LINE IN THE MARK CODE LAYOUT. #### PACKAGE DIMENSIONS #### SC-88A (SC-70-5/SOT-353) CASE 419A-02 **ISSUE L** STYLE 7: PIN 1. BASE 2. EMITTER 3. BASE 4. COLLECTOR 5. COLLECTOR STYLE 6: PIN 1. EMITTER 2 2. BASE 2 3. EMITTER 1 4. COLLECTOR 5. COLLECTOR 2/BASE 1 #### NOTES: - 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. 419A-01 OBSOLETE. NEW STANDARD - 419A-02. 4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE | | INC | HES | MILLIN | IETERS | | |-----|-------|-------|----------|--------|--| | DIM | MIN | MAX | MIN | MAX | | | Α | 0.071 | 0.087 | 1.80 | 2.20 | | | В | 0.045 | 0.053 | 1.15 | 1.35 | | | С | 0.031 | 0.043 | 0.80 | 1.10 | | | D | 0.004 | 0.012 | 0.10 | 0.30 | | | G | 0.026 | BSC | 0.65 BSC | | | | Н | | 0.004 | | 0.10 | | | J | 0.004 | 0.010 | 0.10 | 0.25 | | | K | 0.004 | 0.012 | 0.10 | 0.30 | | | N | 0.008 | REF | 0.20 | REF | | | S | 0.079 | 0.087 | 2.00 | 2.20 | | #### **GENERIC MARKING DIAGRAM*** XXX = Specific Device Code = Date Code = Pb-Free Package (Note: Microdot may be in either location) *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking. | STYLE 1: | STYLE 2: | STYLE 3: | STYLE 4: | STYLE 5: | |-----------------------------|--------------|-----------------------------|----------------------------|--------------------------------| | PIN 1. BASE | PIN 1. ANODE | PIN 1. ANODE 1 | PIN 1. SOURCE 1 | PIN 1. CATHODE | | 2. EMITTER | 2. EMITTER | 2. N/C | 2. DRAIN 1/2 | COMMON ANODE | | 3. BASE | 3. BASE | 3. ANODE 2 | SOURCE 1 | CATHODE 2 | | COLLECTOR | 4. COLLECTOR | CATHODE 2 | 4. GATE 1 | CATHODE 3 | | COLLECTOR | 5. CATHODE | CATHODE 1 | 5. GATE 2 | CATHODE 4 | | | | | | | PIN 1. CATHODE 2. COLLECTOR 3. N/C 4. BASE 5. EMITTER STYLE 8: STYLE 9: PIN 1. ANODE 2. CATHODE 3. ANODE 4. ANODE 5. ANODE Note: Please refer to datasheet for style callout. If style type is not called out in the datasheet refer to the device datasheet pinout or pin assignment. MicroPak is trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor newsers on warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemn #### **PUBLICATION ORDERING INFORMATION** LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com ON Semiconductor Website: www.onsemi.com TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative