
Analog Dialogue 52-11, November 2018 1

Radio
ADF7242

Sensor
ADXL362

Micro-
controller

ADuCM3029/
ADuCM4050

Processor

ServerClient

Radio

Figure 1. Server/client architecture in an example embedded system.

What Makes a Software Application?
Much of the OTA update process is the act of transferring the new software
from the server to the client. The software is transferred as a sequence
of bytes, after it has been converted into a binary format from the source
format. The conversion process compiles the source code files (for example,
c, cpp), links them together into an executable file (for example, exe, elf), and
then the executable is converted into a portable binary file format (for exam-
ple, bin, hex). At a high level, these file formats contain a sequence of bytes
that belong at a specific address of memory in the microcontroller. Typically,
we conceptualize the information being sent over a wireless link as data,
such as a command to change the system’s state or sensor data collected
by the system. In the case of the OTA update, the data is the new software
in binary format. In many cases, the binary file will be too large to send in a
single transfer from the server to the client, meaning that the binary file will
need to be placed into separate packets, in a process called packetizing. To
visualize this process better, Figure 2 demonstrates how different versions of
the software will produce different binary files, and thus different packets to
be sent during the OTA update. In this simple example, each packet contains
8 bytes of data, with the first 4 bytes representing the address in the client’s
memory to store the next 4 bytes.

Major Challenges
Based on this high level description of the OTA update process, three
major challenges arise that the OTA update solution must address. The
first challenge relates to memory. The software solution must organize the
new software application into volatile or nonvolatile memory of the client
device so that it can be executed when the update process completes.
The solution must ensure that a previous version of the software is kept
as a fallback application in case the new software has problems. Also, we
must retain the state of the client device between resets and power cycles,
such as the version of the software we are currently running, and where

analogdialogue.com

Abstract
Many embedded systems are deployed in places that are difficult or
impractical for a human operator to access. This is especially true for
Internet of Things (IoT) applications, which are typically deployed in larger
quantities and with limited battery life. Some examples would be embed-
ded systems that monitor the health of a person or a machine. These
challenges, coupled with the rapid software lifecycle, cause many systems
to require support for over-the-air (OTA) updates. An OTA update replaces
the software on the microcontroller or microprocessor of the embedded
system with new software. While many people are very familiar with OTA
updates on their mobile devices, the design and implementation on a
resource constrained system leads to many different challenges. In this
article, we will describe several different software designs for OTA updates
and discuss their trade-offs. We will see how hardware features of two
ultra low power microcontrollers can be leveraged in OTA update software.

Building Blocks

Server and Client
An OTA update replaces the current software on a device with new soft-
ware, with the new software being downloaded wirelessly. In an embedded
system, the device that runs this software is typically a microcontroller. A
microcontroller is a small computing device with limited memory, speed,
and power consumption. A microcontroller typically contains a micropro-
cessor (core) as well as digital hardware blocks for specific operations
(peripherals). Ultra low power microcontrollers that typically consume
30 μA/MHz to 40 μA/MHz in active mode are ideal for this type of appli-
cation. Using specific hardware peripherals on these microcontrollers and
placing them into low power modes is an important part of the OTA update
software design. An example of an embedded system that might require
OTA updates is shown in Figure 1. Here we see a microcontroller con-
nected with a radio and sensor, which may be used in an IoT application
that gathers data about the environment using the sensor and reports it
periodically using the radio. This portion of the system is referred to as the
edge node or client and is the target of the OTA update. The other portion
of the system is referred to as the cloud or server and is the provider of the
new software. The server and client communicate over a wireless connec-
tion using transceivers (radios).

Over-the-Air (OTA) Updates in Embedded
Microcontroller Applications: Design Trade-
Offs and Lessons Learned
By Benjamin Bucklin Brown

Share on

@0000_0000
00 20 00 20 0B 1A 00 00
@0000_0200
70 B5 04 46 1E 00 08 46

Build
Packet 0
{00, 00, 00, 00, 00, 20, 00, 20}:
Packet 1:
{04, 00, 00, 00, 0B, 1A, 00, 00}

Packetize
int main(void) {
 run_my_application();
 return 0;
}

Figure 2. Binary conversion and packetization process of a software application.

http://www.analogdialogue.com
http://www.analog.com
http://www.analogdialogue.com
https://twitter.com/intent/tweet?text=Over-the-Air%20(OTA)%20Updates%20in%20Embedded%20Microcontroller%20Applications:%20Design%20Trade-Offs%20and%20Lessons%20Learned%20%7C%20Analog%20Devices&url=https%3A%2F%2Fwww.analog.com%2Fen%2Fanalog-dialogue%2Farticles%2Fover-the-air-ota-updates-in-embedded-microcontroller-applications.html%23.W9cCO1woYjM.twitter&related=
https://www.facebook.com/sharer.php?u=https%3A%2F%2Fwww.analog.com%2Fen%2Fanalog-dialogue%2Farticles%2Fover-the-air-ota-updates-in-embedded-microcontroller-applications.html%23.W9cB--cmxgU.facebook&ext=1540821017&hash=AeaN0dLO_B6kLAiL
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fwww.analog.com%2Fen%2Fanalog-dialogue%2Farticles%2Fover-the-air-ota-updates-in-embedded-microcontroller-applications.html%23.W9cCYbVtFYU.linkedin

Analog Dialogue 52-11 November 20182

it is in memory. The second major challenge is communication. The new
software must be sent from the server to the client in discrete packets,
each targeting a specific address in the client’s memory. The scheme for
packetizing, the packet structure, and the protocol used to transfer the
data must all be accounted for in the software design. The final major
challenge is security. With the new software being sent wirelessly from
the server to the client, we must ensure that the server is a trusted party.
This security challenge is known as authentication. We also must ensure
that the new software is obfuscated to any observers, since it may contain
sensitive information. This security challenge is known as confidentiality.
The final element of security is integrity, ensuring that the new software
is not corrupted when it is sent over the air.

The Second-Stage Boot Loader (SSBL)

Understanding the Boot Sequence
The primary boot loader is a software application that permanently resides
on the microcontroller in read-only memory. The region of memory the
primary boot loader resides in is known as info space and is sometimes
not accessible to users. This application executes every time a reset
occurs, generally performing some essential hardware initializations,
and may load user software into memory. However, if the microcontroller
contains on-chip nonvolatile memory, like flash memory, the boot loader
does not need to do any loading and simply transfers control to the
program in flash memory. If the primary boot loader does not have any
support for OTA updates, it is necessary to have a second-stage boot
loader. Like the primary boot loader, the SSBL will run every time a reset
occurs, but will implement a portion of the OTA update process. This boot
sequence is illustrated in Figure 3. In this section, we will describe why a
second-stage boot loader is necessary and describe how specifying the
role of this application is a key design trade-off.

Lesson Learned: Always Have an SSBL
Conceptually, it may seem simpler to omit the SSBL and place all the OTA
update functionality into the user application, as it would allow an existing
software framework, operating system, and device drivers to be seamlessly
leveraged for the OTA process. The memory map and boot sequence of a
system that chose this approach is illustrated in Figure 4.

Application A is the original application that is deployed on the
microcontroller in the field. This application contains the OTA update-
related software, which is leveraged to download Application B when
requested by the server. After this download is complete and Application B
has been verified, Application A will transfer control to Application B by
performing a branch instruction to the reset handler of Application B. The
reset handler is a small piece of code that is the entry point of the software
application and runs on reset. In this case, the reset is mimicked by
performing a branch, which is equivalent to a function call. There are two
major issues with this approach:

 X Many embedded software applications employ a real-time operating
system (RTOS), which allows the software to be split into concurrent
tasks, each with different responsibilities in the system. For instance,
the application presented in Figure 1 may have RTOS tasks for reading
the sensor, running an algorithm on the sensor data, and interfacing
with the radio. The RTOS itself is always active and is responsible
for switching between these tasks based on asynchronous events or
specific time-based delays. As a result, it is not safe to branch to a
new program from an RTOS task, since other tasks will remain running
in the background. The only safe way to terminate a program with a
real-time operating system is through a reset.

0000_0000 0000_3FFF 0000_3FFF0000_4000

User Space

Application Space

Info Space

Primary Boot
Loader

Second-Stage
Boot Loader

Space for
New Applications

Table of Contents Application A Application B

Branch

Branch

Branch

Reset

Primary Boot
Loader

Second-Stage
Boot Loader

Which
Application

Application A

Application B

Figure 3. An example of a memory map and boot flow with SSBL.

Analog Dialogue 52-11, November 2018 3

 X Based on Figure 4, a solution to the previous issue would be to have
the primary boot loader branch to Application B instead of Application A.
However, on some microcontrollers, the primary boot loader always runs
the program that has its interrupt vector table (IVT), a key portion of the
application that describes interrupt handling functions, located at address
0. This means that some form of IVT relocation is necessary to have
a reset map to Application B. If a power cycle occurs during this IVT
relocation, it could leave the system in a permanently broken state.

These issues are mitigated by having an SSBL fixed at address 0, as
illustrated in Figure 3. Since the SSBL is a non-RTOS program, it can safely
branch to a new application. There is no concern of a power cycle placing
the system in a catastrophic state since the IVT of the SSBL at address 0 is
never relocated.

Design Trade-Off: The Role of the SSBL
We’ve spent a lot of time discussing the SSBL and the relationship it has
with the application software, but what does this SSBL program do? At the
bare minimum, the program must determine what the current application
is (where it begins) and then branch to that address. The location of the
various applications in the microcontroller memory is generally kept in
a table of contents (ToC) as shown in Figure 3. This is a shared region of
persistent memory that both the SSBL and application software use to
communicate with each other. When the OTA update process completes,
the ToC is updated with the new application information. Portions of the
OTA update functionality can also be pushed to the SSBL. Deciding what
portions is an important design decision when developing OTA update soft-
ware. The minimal SSBL described above will be extremely simple, easy
to verify, and most likely will not require modifications during the life of the
application. However, this means that each application must be responsible
for downloading and verifying the next application. This can lead to code
duplication in terms of the radio stack, device firmware, and OTA update
software. On the other hand, we can choose to push the entire OTA update
process to the SSBL. In this scenario, applications simply set a flag in the
ToC to request an update and then perform a reset. The SSBL then per-
forms the download sequence and verification process. This will minimize
code duplication and simplify the application specific software. However,
this introduces a new challenge of potentially having to update the SSBL
itself (that is, updating the update code). In the end, deciding what func-
tionality to place in the SSBL will depend on the memory constraints of
the client device, the similarity between downloaded applications, and the
portability of the OTA update software.

Design Trade-Off: Caching and Compression
Another key design decision in the OTA update software will be how to
organize the incoming application in memory during the OTA update pro-
cess. The two types of memory that are typically found on a microcontroller
are nonvolatile memory (for example, flash memory) and volatile memory
(for example, SRAM). The flash memory will be used to store the program
code and read-only data of an application, along with other system-level
data such as the ToC and an event log. The SRAM will be used to store
modifiable portions of the software application, such as nonconstant global
variables and the stack. The software application binary illustrated in
Figure 2 only contains the portion of the program that lives in nonvolatile
memory. The application will initialize the portions that belong in volatile
memory during a startup routine.

During the OTA update process, every time the client device receives a
packet from the server containing a portion of the binary it will be stored
in SRAM. This packet could be either compressed or uncompressed. The
benefit of compressing the application binary is that it will be smaller
in size, allowing for fewer packets to be sent and less space needed in
SRAM to store them during the download procedure. The disadvantage
of this approach is the extra processing time that the compression and
decompression add to the update process, along with having to bundle
compression related code in the OTA update software.

Since the new application software belongs in flash memory but arrives
into SRAM during the update process, the OTA update software will need to
perform a write to flash memory at some point during the update process.
Temporarily storing the new application in SRAM is called caching. At a
high level, there are three different approaches the OTA update software
could take to caching.

 X No caching: Every time a packet arrives containing a portion of the new
application, write it to its destination in flash memory. This scheme
is extremely simple and will minimize the amount of logic in the OTA
update software, but it requires that the region of flash memory for
the new application is fully erased. This method wears down the flash
memory and adds overhead.

 X Partial caching: Reserve a region of SRAM for caching, and when new
packets arrive store them in that region. When the region fills up, empty
it by writing the data to flash memory. This can get complex if packets
arrive out of order or there are gaps in the new application binary, since
a method of mapping SRAM addresses to flash addresses is required.
One strategy is to have the cache act as a mirror of a portion of flash

Figure 4. Example memory map and boot flow without SSBL

0000_0000 0000_3FFF

User Space

Application Space

Info Space

Primary Boot
Loader

Space for
New Applications

Application A Application B

Branch Branch

Reset

Primary Boot
Loader

Application A
Performs OTA Update

Application B

Analog Dialogue 52-11 November 20184

memory. Flash memory is divided into small regions known as pages,
which are the smallest division for erasing. Because of this natural di-
vision, a good approach is to cache one page of flash memory in SRAM
and when it fills up or the next packet belongs in a different page, flush
the cache by writing that page flash memory.

 X Full caching: Store the entire new application in SRAM during the OTA
update process and only write it to flash memory when it has been fully
downloaded from the server. This approach overcomes the shortcomings
of the previous approaches by minimizing the number of writes to flash
memory and avoiding complex caching logic in the OTA update software.
However, this will place a limit on the size of the new application being
downloaded, since the amount of available SRAM on the system is typi-
cally much smaller than the amount of available flash memory.

Page 8 Page 9 …

Application A

2 kB 2 kB

Flash: Application Space

SRAM: SSBL

Single Page Cache StackGlobal
Variables

Cache Full: Flash Write

2 kB

OTA
Download

Figure 5. Using SRAM to one page of cache flash memory.

The second scheme of partial caching during an OTA update is illustrated
in Figure 5, where the portion of flash memory for Application A from
Figures 3 and 4 is magnified and a functional memory map of the SRAM
for the SSBL is illustrated. An example flash page size of 2 kB is shown.
Ultimately this design decision will be determined based on the size of the
new application and the allowed complexity of the OTA update software.

Security and Communication

Design Trade-Off: Software vs. Protocol
The OTA update solution must also address security and communication.
Many systems like the one shown in Figure 1 will have a communication
protocol implemented in hardware and software for normal (non-OTA
update related) system behavior like exchanging sensor data. This means
that there is a method of (possibly secure) wireless communication already
established between the server and the client. Communication protocols
that an embedded system like Figure 1 might use would be, for example,
Bluetooth® Low Energy (BLE) or 6LoWPAN. Sometimes these protocols
have support for security and data exchange that the OTA update software
may be able to leverage during the OTA update process.

The amount of communication functionality that must be built into the OTA
update software will ultimately be determined by how much abstraction is
provided by the existing communication protocol. The existing commu-
nication protocol has facilities for sending and receiving files between the

server and client that the OTA update software can simply leverage for the
download process. However, if the communication protocol is more primitive
and only has facilities for sending raw data, the OTA update software may
need to perform packetizing and provide metadata along with the new appli-
cation binary. This also applies to the security challenges. The onus may be
on the OTA update software to decrypt the bytes being sent over the air for
confidentiality if the communication protocol does not support this.

In conclusion, building facilities like custom packet structure, server/client
synchronization, encryption, and key exchange into the OTA update software
will be determined based on what the system’s communication protocol
provides and what the requirements are for security and robustness. In
the next section, we will propose a complete security solution that solves
all the challenges introduced earlier and we will show how to leverage a
microcontroller’s cryptographic hardware peripheral in this solution.

Solving Security Challenges
Our security solution needs to keep the new application sent over-the-
air confidential, detect any corruption in the new application, and verify
that the new application was sent from a trusted server as opposed to
a malicious party. These challenges can be solved using cryptographic
(crypto) operations. Specifically, two cryptographic operations known as
encryption and hashing can be used in the security solution. Encryption
will use a shared key (password) between the client and server to
obfuscate the data being sent wirelessly. A specific type of encryption
that the microcontroller’s crypto hardware accelerator may support is
called AES-128 or AES-256, depending on the key size. Along with the
encrypted data, the server can send a digest to ensure that there is no
corruption. The digest is generated by hashing the data packet—an
irreversible mathematical function that generates a unique code. If any
part of the message or digest is modified after the server creates them,
like a bit being flipped during wireless communication, the client will
notice this modification when it performs the same hash function on the
data packet and compares the digests. A specific type of hashing that the
microcontroller’s crypto hardware accelerator may support is SHA-256.
Figure 6 shows a block diagram of a crypto hardware peripheral in the
microcontroller, with the OTA update software residing in the Cortex-M4
application layer. This figure also shows the support for protected key
storage in the peripheral, which can be leveraged in the OTA update
software solution to safely store the client’s keys.

Page (255)

Protected Key Store

Crypto APB Interface

Cortex-M4 Application Layer

Key Management
Key Obfucation

Key Validation

Key Wrap-
Unwrap

Key
HMAC

AES 128/
AES 256

AES Modes
CCM/CCM,*
CTR, GCTR,
CBC, CMAC

SHA-256

Page (254)

Page (253)

Page (0)

Fl
as

h
U

se
r

S
p

ac
e

S
ec

ur
e

K
ey

s

Figure 6. Hardware block diagram of the crypto accelerator on the
ADuCM4050.

Analog Dialogue 52-11, November 2018 5

A common technique to solve the final challenge of authentication is to use
asymmetric encryption. For this operation, the server generates a public-pri-
vate key pair. The private key is known only by the server and the public
key is known by the client. Using the private key, the server can generate a
signature of a given block of data—like the digest of the packet that will be
sent over the air. The signature is sent to the client, who can verify the signa-
ture using the public key. This enables the client to confirm the message was
sent from the server and not a rogue third-party. This sequence is illustrated
in Figure 7, with solid arrows representing function input/output and dashed
arrows showing the information that is sent over the air.

Verifying Function Signing Function

SHA-256

Client Server

First Payload

Hash Digest

Private KeyPublic Key

Signature
True/False

Figure 7. Using asymmetric encryption to authenticate a message.

Most microcontrollers do not have hardware accelerators for these
asymmetric encryption operations, but they can be implemented using
software libraries such as Micro-ECC, which specifically targets resource
constrained devices. The library requires a user-defined random number
generating function, which can be implemented using the true random
number generator hardware peripheral on the microcontroller. While these
asymmetric encryption operations solve the trust challenge during an OTA
update, they are costly in terms of processing time and require a signature
to be sent with the data, which increases packet sizes. We could perform
this check once at the end of the download, using a digest of the final
packet or the digest of the entire new software application, but that would
allow third-parties to download untrusted software to the client, which is
not ideal. Ideally, we want to verify every packet that we receive is from
our trusted server without the overhead of a signature each time. This
can be achieved using a hash chain.

A hash chain incorporates the cryptographic concepts we have discussed
in this section into a series of packets to tie them together mathematically.
As Figure 8 shows, the first packet (number 0) contains the digest of the
next packet. Instead of the actual software application data, the payload
of the first packet is the signature. The second packet (number 1) payload
contains a portion of the binary, and the digest of the third packet (number 2).
The client verifies the signature in the first packet and caches the digest,
H0, for later use. When the second packet arrives, the client hashes the
payload and compares it to H0. If they match, the client can be sure
that this subsequent packet was from the trusted server without all the
overhead of doing a signature check. The expensive task of generating
this chain is left to the server, and the client must simply cache and hash
as each packet arrives to ensure packets arrive uncorrupted, with integrity,
and authenticated.

@00000000
00 20 00 20 0B 1A 00 00

@00000200
70 B5 04 46 1E 00 08 46
15 46 04 D0 15 F8 01 1B
A0 47 76 1E FA D1 70 BD
2D E9 F0 46 83 B0 82 46

Number Payload Hash

0 P0 = Signature(H0, Public Key) H0 = H(P1 + H1)

1 P1 = 00 20 00 20 0B 1A 00 00 H1 = H(P2 + H2)

2 P2 = 70 B5 04 46 1E 00 08 46 H2 = H(P3 + H3)

n Pn = … Hn = H(Pn+1 + Hn+1)

Figure 8. Applying the hash chain to a packet sequence.

Experimental Setup
The ultra low power microcontrollers that solve the memory, communication,
and security design challenges mentioned in this article are the ADuCM3029
and ADuCM4050. These microcontrollers contain the hardware peripherals
discussed throughout the article for OTA updates such as flash memory,
SRAM, crypto accelerator, and a true random number generator. The device
family packs (DFPs) for these microcontrollers provide software support for
building an OTA update solution on these devices. The DFP contains periph-
eral drivers that provide simple, flexible interfaces for using the hardware.

Hardware Configuration
To verify and validate the concepts discussed here, an OTA update soft-
ware reference design was created using the ADuCM4050. For the client,
an ADuCM4050 EZ-KIT® is connected to an ADF7242 using the transceiver
daughter board horseshoe connector. The client device is pictured on
the left of Figure 9. For the server, a Python application was developed
that runs on a Windows PC. The Python application communicates over
the serial port to another ADuCM4050 EZ-KIT that also has an ADF7242
attached in the same arrangement as the client. However, the right EZ-KIT
in Figure 9 performs no OTA update logic, and simply relays packets
received from the ADF7242 to the Python application.

Figure 9. Experimental hardware setup.

Software Components
The software reference design partitions the flash memory of the client
device as shown in Figure 3. The main client application was designed
to be very portable and configurable such that it could be leveraged in
other arrangements or on other hardware platforms. Figure 10 shows the
software architecture of the client device. Note that while we sometimes

https://github.com/kmackay/micro-ecc
http://analog.com/ADuCM3029
http://analog.com/ADuCM4050
https://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/adzs-u4050lf-ezkit.html
http://analog.com/ADF7242

Analog Dialogue 52-11 November 20186

refer to this entire application as the SSBL, in Figure 10 and from now on
we logically separate the true SSBL portion (in blue) from the OTA update
portion (in red), as the latter is not necessarily required to be implemented
entirely in the same application as previously discussed. The hardware
abstraction layer shown in Figure 10 keeps the OTA client software
portable and independent of any underlying libraries (shown in orange).

OTA Client
 Update Sequence
 Hash Chain
 Error Handling

Second-Stage Boot Loader
 ToC Access
 Boot Sequence

ADuCM4050
DFP

ADF742
Stack

Micro-ECC
Library

ADuCM4050

Reset

Hardware Abstraction Layer (HAL)
 Messaging, Security Functions, Memory Access

Figure 10. Client software architecture.

The software application implements the boot sequence in Figure 3, a
simple communication protocol for downloading the new application from
the server, and the hash chain. Each packet in the communication protocol
has a 12-byte metadata header, 64-byte payload, and a 32-byte digest. In
addition, it has the following features:

 X Caching: Support for both no caching or caching one page of flash
memory, depending on user configuration.

 X Table of Contents: The ToC is designed to only hold two applications,
and the new application is always downloaded into the oldest spot,
to keep a fallback application. This is called an A/B update scheme.

 X Messaging: Support for either the ADF7242 or UART for messaging,
depending on user configuration. Using the UART for messaging
eliminates the left EZ-KIT in Figure 9, leaving the kit on the right for
the client. This over-the-wire update scheme is useful for initial system
bring-up and debugging.

Results
Along with meeting the functional requirements and passing a variety of
tests, the performance of the software is also critical to determining project
success. Two metrics that are commonly used to measure the perfor-
mance of embedded software are footprint and cycles. Footprint refers to
how much space the software application takes up in volatile (SRAM) and
nonvolatile (flash) memory. Cycles refers to the number of microprocessor
clock cycles the software uses to perform a specific task. While being
similar to software run-time, it accounts for the fact that the software may
enter low power modes while performing the OTA update where the micro-
processor is inactive, and no cycles are consumed. While the software
reference design was not optimized for either of these metrics, they are
useful for benchmarking the program and comparing design trade-offs.

Figure 11 and Figure 12 show the footprint of the OTA updates software
reference design implemented on the ADuCM4050 with no caching. The
figures are partitioned according to the components illustrated in Figure 10.
As Figure 11 shows, the entire application uses around 15 kB of flash
memory. This is quite small considering the ADuCM4050 contains 512 kB
of flash memory. The true application software (the software developed for
the OTA update process) only takes about 1.5 kB, with the rest being used
for libraries such as the DFP, Micro-ECC, and ADF7242 stack. These results
help to illustrate the design trade-off of what role the SSBL should have in
the system. The majority of the 15 kB footprint is for the update process.
The SSBL itself only takes around 500 bytes of footprint, with an additional
1 kB to 2 kB of DFP code for device access like the flash driver.

1734

3824

7526

528
528

596

ADF7242 Micro-ECC DFP SSBL OTA Client HAL

Figure 11. Flash footprint (bytes).

ADF7242 Micro-ECC DFP SSBL OTA Client HAL

765

1512

116

188 336

Figure 12. SRAM footprint (bytes).

To evaluate the overhead of the software, we perform cycle counting every
time a data packet is received and then look at the average number of
cycles consumed per packet. Each data packet requires AES-128 decryption,
SHA-256 hashing, a write to flash memory, and some packet metadata
validation. With a packet payload size of 64 bytes and no caching, the
overhead is 7409 cycles to process a single data packet. Using a 26 MHz
core clock, this is about 285 microseconds of processing time. The value
was calculated using the cycle counting driver located in the ADuCM4050
DFP (unadjusted cycles) and is the average taken during a 100 kB binary
download (about 1500 packets). The minimal overhead per packet can
be attributed to the drivers in the DFP leveraging the direct memory

Analog Dialogue 52-11, November 2018 7

Benjamin Bucklin Brown [benjamin-b.brown@analog.com] joined ADI in
2016 after graduating from McGill University with a Bachelor of Engineering
in electrical engineering. Currently he works as an embedded software
engineer in the Consumer Sensing and Processing Technology (CSPT) Group,
developing firmware for application-specific integrated circuits. Previously
he worked in the IoT Platform Technology Group, developing device drivers
and software reference applications for the ADuCM3029 and ADuCM4050
microcontrollers.

Benjamin Bucklin
Brown

access (DMA) hardware peripheral on the ADuCM4050 when performing bus
transactions and the drivers placing the processor into a low power sleep
state during each transaction. If we disable the use of low power sleeping
in the DFP and change the bus transactions to not use DMA, the overhead
per data packet increases to 17,297 cycles. This illustrates the impact that
efficient use of device drivers has on an embedded software application.
While the overhead is also kept low by having a small number of data bytes
per packet, doubling the data bytes per packet to 128 only yields a small
increase in cycles—resulting in 8362 cycles for the same experiment.

Cycles and footprint also illustrate the trade-off discussed earlier of
caching packet data instead of writing to flash memory each time. With
one page of flash memory caching enabled, the overhead per data packet
reduces from 7409 to 5904 cycles. This 20% reduction comes from the
ability to skip the flash write for most packets and only perform a flash
write when the cache is full. The reduction comes at a price of SRAM
footprint. Without caching, the HAL only requires 336 bytes of SRAM, as
shown in Figure 12. However, when caching is used we must reserve
space equal to a full page of flash memory, which increases the SRAM
utilization to 2388 bytes. The flash memory utilization of the HAL also
increases by a small amount due to the extra code needed to determine
when the cache must be flushed.

These results demonstrate the tangible impact the design decisions will
have on the performance of the software. There is no one-size-fits-all
solution—each system will have different requirements and constraints,
and the OTA update software will need to be tuned to address them.
Hopefully this article has shed some light on common problems and trade-
offs that were faced when designing, implementing, and validating an OTA
update software solution.

References
Nilsson, Dennis Kengo and Ulf E. Larson. “Secure Firmware Updates over
the Air in Intelligent Vehicles.” ICC Workshops—2008 IEEE International
Conference on Communications Workshops, May 2008.

mailto:benjamin-b.brown%40analog.com?subject=
https://ieeexplore.ieee.org/document/4531926
https://ieeexplore.ieee.org/document/4531926

	Abstract
	Building Blocks
	Server and Client
	What Makes a Software Application?
	Major Challenges

	The Second-Stage Boot Loader (SSBL)
	Understanding the Boot Sequence
	Lesson Learned: Always Have an SSBL
	Design Trade-Off: The Role of the SSBL
	Design Trade-Off: Caching and Compression

	Security and Communication
	Design Trade-Off: Software vs. Protocol
	Solving Security Challenges

	Experimental Setup
	Hardware Configuration
	Software Components
	Results

	References

