Power MOSFET, Single P-Channel

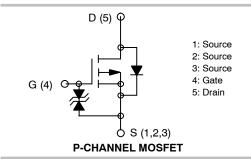
-40 V, -140 A, 4.2 m Ω

Features

- Small Footprint (5 x 6 mm) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- NVMFS5A140PLZWF: Wettable Flank Option for Enhanced Optical Inspection
- AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

SPECIFICATION MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise noted) (Notes 1, 2, 3)

Symbol	Parameter			Value	Unit
V _{DSS}	Drain to Source Voltage			-40	V
V _{GS}	Gate to Source Voltage			±20	V
I _D	Continuous Drain, Current R ₀ JC, (Notes 1, 3)	Steady State	T _C = 25°C	-140	Α
P _D	Power Dissipation R _{θJC} (Note 1)		T _C = 25°C	200	W
I _D	Continuous Drain: Current R _{0JA} (Notes 1, 2, 3)	Steady State	T _A = 25°C	-20	Α
P _D	Power Dissipation R _{θJA} (Note 1, 2)		T _A = 25°C	3.8	W
I _{DP}	Pulsed Drain Current	PW ≤ 10 duty cycle		-560	Α
T _J , T _{STG}	Operating Junction and Storage Temperature			–55 to +175	°C
I _S	Source Current (Body Diode)			-140	Α
E _{AS}	Single Pulse Drain to Source Avalanche Energy (L= 1.0 mH, I _{L(pk)} = -29 A)			420	mJ
TL	Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			260	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ON Semiconductor®

www.onsemi.com

V _{DSS}	R _{DS(ON)} MAX	I _D MAX
-40 V	4.2 mΩ @ –10 V	-140 A
	7.2 m Ω @ –4.5 V	

MARKING DIAGRAM

XXXXXX = Specific Device Code

5A140L(NVMFS5A140PLZ) 140LWF(NVMFS5A140PLZWF)

A = Assembly Location

Y = Year W = Work Week

ZZ = Lot Traceability

ORDERING INFORMATION

See detailed ordering and shipping information on page 7 of this data sheet.

Symbol	bol Parameter		Unit
$R_{ heta JC}$	Junction to Case Steady State	0.75	2000
$R_{\theta JA}$	Junction to Ambient Steady State (Note 2)	°C/W	

- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.
- 2. Surface mounted on FR4 board using a 650 mm², 2 oz. Cu pad.
- 3. Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle.

THERMAL CHARACTERISTICS

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Symbol	Parameter	Test Condition		Min	Тур	Max	Unit
OFF CHARA	CTERISTICS				•		
V _{(BR)DSS}	Drain to Source Breakdown Voltage	$I_D = -1 \text{ mA}, V_{GS} = 0 \text{ V}$		-40			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = -40 V, V _{GS} = 0 V	T _J = 25°C			-1.0	μΑ
			T _J = 100°C (Note 4)			-100	μΑ
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 16 \text{ V}, V_{DS} = 0 \text{ V}$				±10	μΑ
ON CHARA	CTERISTICS (Note 5)						
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = -10 \text{ V}, I_{D} = -1 \text{ mA}$		-1.2		-2.6	V
R _{DS(on)}	Drain to Source On Resistance	V _{GS} = -10 V	I _D = -50 A		3.2	4.2	
		V _{GS} = -4.5 V	I _D = -50 A		5.0	7.2 mΩ	
9FS	Forward Transconductance	$V_{DS} = -10 \text{ V}, I_{D} = -50 \text{ A}$			125		S
CHARGES,	CAPACITANCES & GATE RESISTANC	E					
C _{iss}	Input Capacitance	V _{GS} = 0 V, f = 1 MHz			7400		
C _{oss}	Output Capacitance	$V_{DS} = -20 \text{ V},$			1030		pF
C _{rss}	Reverse Transfer Capacitance				720		
Q _{g(tot)}	Total Gate Charge	$V_{GS} = -10 \text{ V}, I_D = -50 \text{ A}$			136		
Q _{gs}	Gate to Source Charge	$V_{DS} = -20 \text{ V},$			26		nC
Q _{gd}	Gate to Drain Charge				31		
SWITCHING	CHARACTERISTICS (Note 6)			•	•		
t _{d(on)}	Turn-On Delay Time	$V_{DS} = -20 \text{ V}, I_{D} = -50 \text{ A},$			50		
t _r	Rise Time	$V_{GS} = -10 \text{ V}, R_{G} = 50 \Omega$			860		
t _{d(off)}	Turn-Off Delay Time				540		ns
t _f	Fall Time				740		
DRAIN-SOU	RCE DIODE CHARACTERISTICS			•	•		T.
V _{SD}	Forward Diode Voltage	$V_{GS} = 0 \text{ V}, I_{S} = -50 \text{ A}$			-0.83	-1.5	V
t _{rr}	Reverse Recovery Time	$V_{GS} = 0 \text{ V}, I_{S} = -50 \text{ A}$			108		ns
Q _{rr}	Reverse Recovery Charge	di/dt = 100 A/μs			236		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. The maximum value is specified by design at T_J = 100 °C. Product is not tested to this condition in production.

5. Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2 %.

6. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

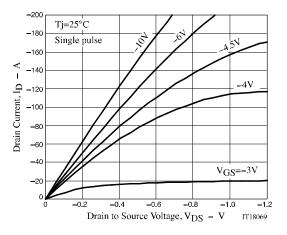


Figure 1. I_D - V_{DS}

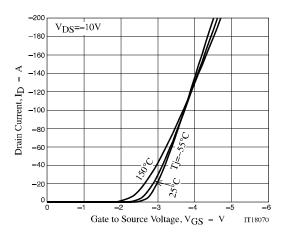


Figure 2. I_D - V_{GS}

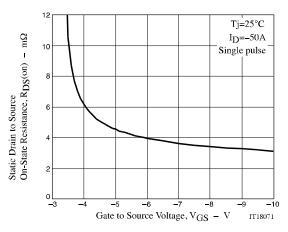


Figure 3. $R_{DS(on)} - V_{GS}$

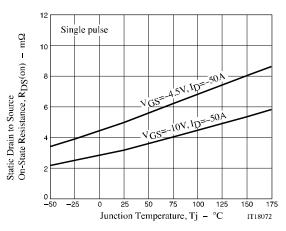


Figure 4. $R_{DS(on)} - T_J$

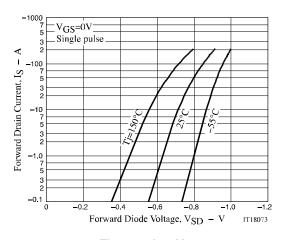


Figure 5. I_S – V_{SD}

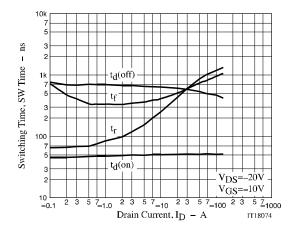


Figure 6. SW Time – I_D

TYPICAL CHARACTERISTICS

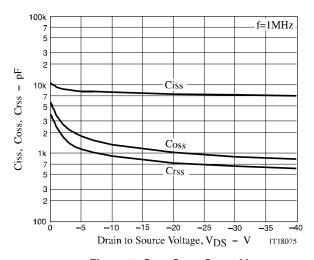


Figure 7. C_{iss} , C_{oss} , C_{rss} – V_{DS}

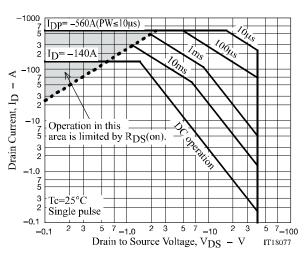


Figure 9. SOA

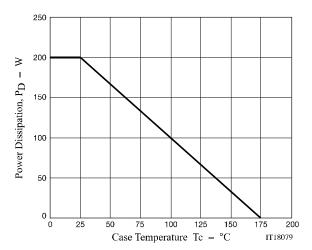


Figure 11. P_D - T_C

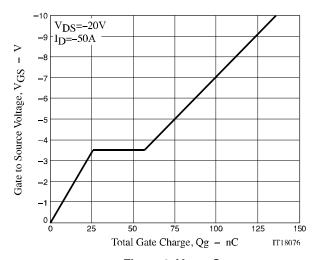


Figure 8. V_{GS} - Q_g

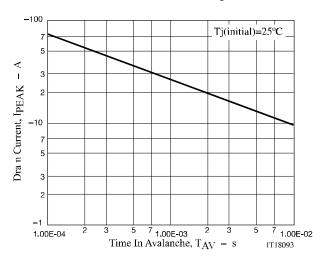
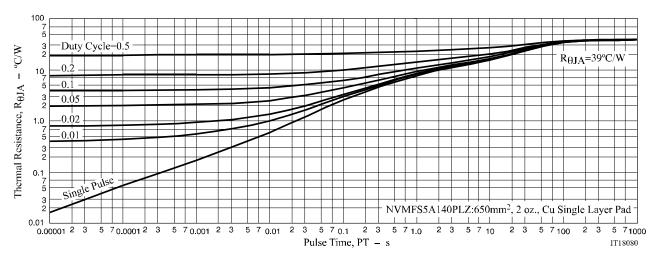
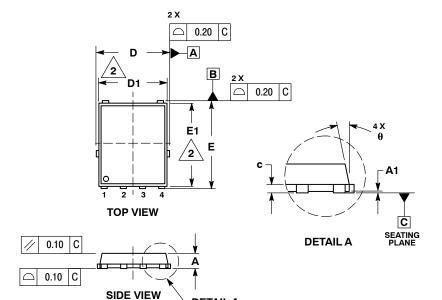
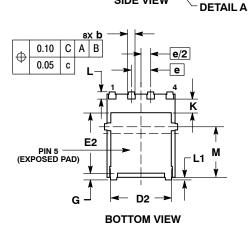


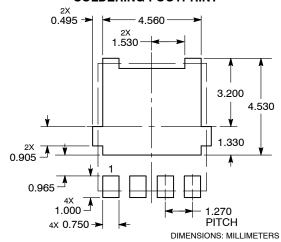
Figure 10. I_{PEAK} – T_{AV}

TYPICAL CHARACTERISTICS


Figure 12. $R_{\theta JA}$ – Pulse Time

DFN5 5x6, 1.27P (SO-8FL) CASE 488AA ISSUE M


- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSION DI AND E1 DO NOT INCLUDE MOLD FLASH PROTRUSIONS OR GATE BURRS.

	MILLIMETERS			
DIM	MIN	NOM	MAX	
Α	0.90	1.00	1.10	
A1	0.00		0.05	
b	0.33	0.41	0.51	
С	0.23	0.28	0.33	
D	5.00	5.15	5.30	
D1	4.70	4.90	5.10	
D2	3.80	4.00	4.20	
E	6.00	6.15	6.30	
E1	5.70	5.90	6.10	
E2	3.45	3.65	3.85	
е		1.27 BSC		
G	0.51	0.575	0.71	
K	1.20	1.35	1.50	
L	0.51	0.575	0.71	
L1	0.125 REF			
М	3.00	3.40 3.8		
A	0 °	12		

STYLE 1: PIN 1. SOURCE 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN

RECOMMENDED SOLDERING FOOTPRINT*

ORDERING INFORMATION

Device	Marking	Package	Shipping (Qty / Packing) [†]
NVMFS5A140PLZT1G	5A140L	DFN5 5x6, 1.27P (SO-8FL) (Pb-Free)	1.500 / Tape & Reel
NVMFS5A140PLZWFT1G	140LWF	DFN5 5x6, 1.27P (SO-8FL) (Pb-Free / Wettable Flanks)	1.500 / Tape & Reel
NVMFS5A140PLZT3G	5A140L	DFN5 5x6, 1.27P (SO-8FL) (Pb-Free)	5.000 / Tape & Reel
NVMFS5A140PLZWFT3G	140LWF	DFN5 5x6, 1.27P (SO-8FL) (Pb-Free / Wettable Flanks)	5.000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hol

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Europe, Middle East and Africa Technical
Phone: 421 33 790 2910

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative