

STPSC16H065A

Datasheet

650 V power Schottky silicon carbide rectifier

Features

- No or negligible reverse recovery
- Temperature independent switching behavior
- High forward surge capability
- Operating T_i from -40 °C to 175 °C
- Power efficient product
- ECOPACK[®]2 compliant

Applications

- DC/DC converter
- High frequency inverter
- Boost PFC function

Description

The STPSC16H065A SiC diode is an ultrahigh performance power Schottky diode. It is manufactured using a silicon carbide substrate. The wide band gap material allows the design of a Schottky diode structure with a 650 V rating. Due to the Schottky construction, no recovery is shown at turn-off and ringing patterns are negligible. The minimal capacitive turn-off behavior is independent of temperature.

Especially suited for use in PFC applications, this ST SiC diode, packaged in TO-247, will boost the performance in hard switching conditions. Its high forward surge capability ensures a good robustness during transient phases.

Product status link	
STPSC16H065A	

Product summary				
I _{F(AV)}	16 A			
V _{RRM}	650 V			
T _j (max.)	175 °C			
V _F (typ.)	1.56 V			

Product label

1 Characteristics

Table 1. Absolute ratings (limiting values at 25 °C, unless otherwise specified)

Symbol	Pa	Value	Unit	
V _{RRM}	Repetitive peak reverse voltage $T_j = -40 \text{ °C to } +175 \text{ °C}$		650	V
I _{F(RMS)}	Forward rms current	22	А	
I _{F(AV)}	Average forward current $T_c = 115 \circ C^{(1)}$, DC current		16	А
I _{FSM} Su	Surge non repetitive forward current	t_p = 10 ms sinusoidal, T_c = 25 °C	120	
		t_p = 10 ms sinusoidal, T_c = 125 °C	105	Α
		t_p = 10 µs square, T_c = 25 °C	800	
I _{FRM}	Repetitive peak forward current $T_c = 115 \ ^{\circ}C^{(1)}$ $T_j = 175 \ ^{\circ}C$ $\delta = 0.1$		66	Α
T _{stg}	Storage temperature range	-55 to +175	°C	
Тj	Operating junction temperature	-40 to +175	°C	

1. Value based on $R_{th(j-c)}$ max.

Table 2. Thermal resistance parameters

Symbol	Parameter	Va	lue	Unit
Symbol	F al allielei	Тур.	Max.	Onit
R _{th(j-c)}	Junction to case	0.95	1.5	°C/W

For more information, please refer to the following application note:

AN5088: Rectifiers thermal management, handling and mounting recommendations

Table 3. Static electrical characteristics

Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit
I _R ⁽¹⁾	Deverse leakage eurrent	T _j = 25 °C	V _R = V _{RRM}	-	12	140	μA
'R`	Reverse leakage current	T _j = 150 °C		-	120	560	
V _F ⁽²⁾ Forward voltage drop	Ennuard voltage drep	T _j = 25 °C	I _F = 16 A	-	1.56	1.75	V
	Forward voltage drop	T _j = 150 °C		-	1.98	2.50	

1. Pulse test: $t_p = 10 \text{ ms}, \delta < 2\%$

2. Pulse test: $t_p = 500 \ \mu s, \ \delta < 2\%$

To evaluate the conduction losses, use the following equation:

 $P = 1.35 \text{ x } I_{F(AV)} + 0.07 \text{ x } I_{F}^{2}(RMS)$

For more information, please refer to the following application notes related to the power losses:

- AN604: Calculation of conduction losses in a power rectifier
- AN4021: Calculation of reverse losses on a power diode

Symbol	Parameter	Test conditions	Тур.	Unit		
Q _{Cj} ⁽¹⁾	Total capacitive charge	V _R = 400 V	41	nC		
Ci	Total conceitance	V_{R} = 0 V, T _c = 25 °C, F = 1 MHz	750	~ Г		
Uj	Total capacitance	V_{R} = 300 V, T _c = 25 °C, F = 1 MHz	76	pF		
1. Maat aaay	Must accurate value for the conscitive charge: $Q_{\mu}(V_{\mu}) = \int C_{\mu}(V) dV$					

Table 4. Dynamic electrical characteristics

Most accurate value for the capacitive charge: $Q_{Cj}(V_R) = \int_0^\infty C_j(V)dV$

1.1 Characteristics (curves)

2 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

2.1 TO-247 package information

- Epoxy meets UL94, V0
- Cooling method: by conduction (C)
- Recommended torque value: 0.8 N·m
- Maximum torque value: 1.0 N·m

			Dimer	nsions		
Ref.		Millimeters		Incl	nes (for reference o	only)
	Min.	Тур.	Max.	Min.	Тур.	Max.
А	4.85		5.15	0.191		0.203
A1	2.20		2.60	0.086		0.102
b	1.00		1.40	0.039		0.055
b1	2.00		2.40	0.078		0.094
b2	3.00		3.40	0.118		0.133
С	0.40		0.80	0.015		0.031
D	19.85		20.15	0.781		0.793
E	15.45		15.75	0.608		0.620
е	5.30	5.45	5.60	0.209	0.215	0.220
L	14.20		14.80	0.559		0.582
L1	3.70		4.30	0.145		0.169
L2		18.50			0.728	
ØP	3.55		3.65	0.139		0.143
ØR	4.50		5.50	0.177		0.217
S	5.30	5.50	5.70	0.209	0.216	0.224

Table 5. TO-247 package mechanical data

3 Ordering information

Table	6.	Ordering	information
-------	----	----------	-------------

Order code	Marking	Package	Weight	Base qty.	Delivery mode
STPSC16H065AW	STPSC16H065AW	TO-247	4.43 g	30	Tube

Revision history

Table 7. Document revision history

Date	Version	Changes
08-Oct-2018	1	Initial release.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics – All rights reserved