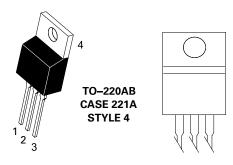

Silicon Controlled Rectifiers — 400V - 800V

Additional Information

Accessories

Samples

Functional Diagram


Description

Designed primarily for half-wave ac control applications, such as motor controls, heating controls and power supplies; or wherever half-wave silicon gate-controlled, solid-state devices are needed.

Features

- Blocking Voltage to 800 Volts
- On-State Current Rating of 12 Amperes RMS at 80°C
- High Surge Current Capability100 Amperes
- Rugged, Economical TO-220AB Package
- Glass Passivated Junctions for Reliability and Uniformity
- Minimum and Maximum Values of IGT, VGT an IH Specified for Ease of Design
- High Immunity to dv/dt 100 V/µsec Minimum at 125°C
- These are Pb-Free devices

Pin Out

Silicon Controlled Rectifiers — 400V - 800V

Maximum Ratings (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit	
Peak Repetitive Off-State Voltage (Note 1) (T _J = -40 to 125°C, Sine Wave, 50 to 60 Hz, Gate Open) MCR12DG MCR12MG MCR12NG		V _{DRM} ,	400 600 800	V
On-State RMS Current (180° Conduction Angles; T _C = 80°C)	I _{T (RMS)}	12	А
Peak Non-repetitive Surge Current (1/2 Cycle, Sine Wave 60	I _{TSM}	100	А	
Circuit Fusing Consideration (t = 8.3 ms)	l²t	41	A ² sec	
Forward Peak Gate Power (Pulse Width \leq 1.0 μ s, $T_{\rm C}$ = 80°C)	P _{GM}	5.0	W	
Forward Average Gate Power (t = 8.3 ms, T_c = 80°C)	P _{G (AV)}	0.5	W	
Average On-State Current (180° Conduction Angles; T _C = 80	I _{T(AV)}	7.8	А	
Forward Peak Gate Current (Pulse Width ≤ 1.0 s, T _C = 90°C)	I _{GM}	2.0	А	
Operating Junction Temperature Range	T_J	-40 to +125	°C	
Storage Temperature Range	T _{stq}	-40 to +150	°C	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Thermal Characteristics

Rating		Symbol	Value	Unit
Thermal Resistance,	Junction-to-Case (AC) Junction-to-Ambient	R _{ejc} R _{eja}	2.2 62.5	°C/W
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds		T _L	260	°C

Electrical Characteristics - OFF ($T_J = 25$ °C unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
Peak Repetitive Forward or Reverse Blocking Current	T ₁ = 25°C	I _{DRM} ,	-	-	0.01	no A
$(V_D = Rated V_{DRM})$ and V_{RRM} ; Gate Open)	T _J = 125°C	I _{RRM}	-	-	2.0	mA

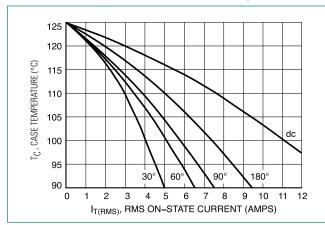
Electrical Characteristics - ON

Characteristic	Symbol	Min	Тур	Max	Unit
Peak Forward On–State Voltage (Note 2) ($I_{TM} = 24 \text{ A}$)	V_{TM}	_	-	2.2	V
Gate Trigger Current (Continuous dc) ($V_D = 12 \text{ V}, R_L = 100 \Omega$)	I _{GT}	2.0	8.0	20	mA
Holding Current ($V_D = 12 \text{ V}$, Initiating Current = 200 mA, Gate Open)	I _H	4.0	20	40	mA
Latch Current ($V_D = 12 \text{ V}, I_G = 20 \text{ mA}$)	IL	6.0	25	60	mA
Gate Trigger Voltage (Continuous dc) ($V_D = 12 \text{ Vdc}, R_L = 100 \Omega$)	$V_{\rm GT}$	0.5	0.65	1.0	V

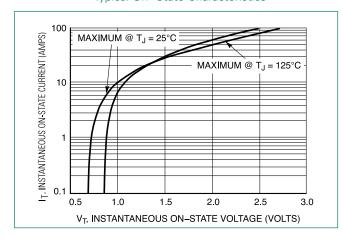
Dynamic Characteristics

Characteristic	Symbol	Min	Тур	Max	Unit
Critical Rate-of-Rise of Off-State Voltage $(V_D = Rated V_{DRM'} Exponential Waveform, Gate Open, T_J = 125°C)$	dv/dt	100	250	_	V/µs
Repetitive Critical Rate of Rise of On-State Current IPK = 50 A, Pw = 40 µsec, diG/dt = 1 A/µsec, Igt = 50 mA	di/dt	_	_	50	A/µs

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


^{1.} V_{BBM} and V_{SBM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

Silicon Controlled Rectifiers — 400V - 800V


Voltage Current Characteristic of SCR

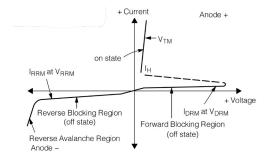

Symbol	Parameter
V_{DRM}	Peak Repetitive Forward Off State Voltage
I _{DRM}	Peak Forward Blocking Current
V_{RRM}	Peak Repetitive Reverse Off State Voltage
I _{RRM}	Peak Reverse Blocking Current
V_{TM}	Maximum On State Voltage
I _H	Holding Current

Figure 1.Typical RMS Current Derating

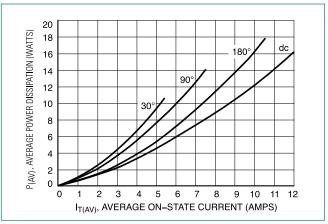


Figure 3.Typical On–State Characteristics

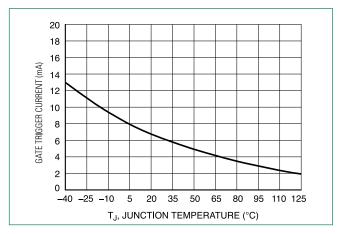
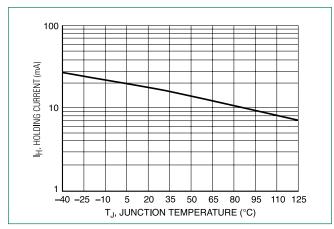
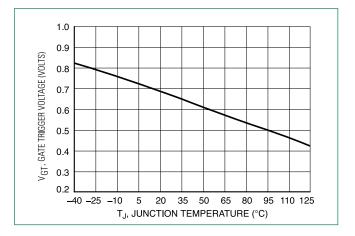


Figure 2. On-State Power Dissipation


Figure 4.Typical Gate Trigger Current vs Junction Temp



Silicon Controlled Rectifiers — 400V - 800V

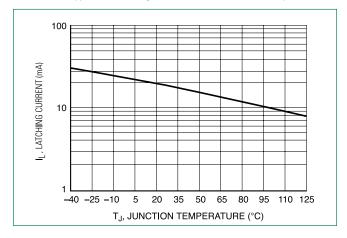
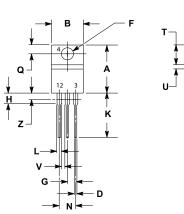
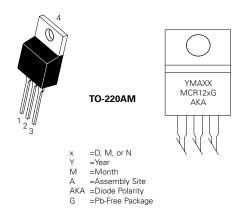

Figure 5.Typical Holding Current vs Junction Temp

Figure 6.Typical Gate Trigger Voltage vs Junction Temp


Figure 7.Typical Latching Current vs Junction Temp




Silicon Controlled Rectifiers — 400V - 800V

Dimensions

Part Marking System

	Inches		Millin	neters
Dim	Min	Max	Min	Max
А	0.590	0.620	14.99	15.75
В	0.380	0.420	9.65	10.67
С	0.178	0.188	4.52	4.78
D	0.025	0.035	0.64	0.89
F	0.142	0.147	3.61	3.73
G	0.095	0.105	2.41	2.67
Н	0.110	0.130	2.79	3.30
J	0.018	0.024	0.46	0.61
K	0.540	0.575	13.72	14.61
L	0.060	0.075	1.52	1.91
Ν	0.195	0.205	4.95	5.21
Q	0.105	0.115	2.67	2.92
R	0.085	0.095	2.16	2.41
S	0.045	0.060	1.14	1.52
T	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
V	0.045		1.15	
Z		0.080		2.04

Pin Assignment			
1	Cathode		
2	Anode		
3	Gate		
4	Anode		

Ordering Information

Device	Package	Shipping
MCR12DG	TO 000 4 D	
MCR12MG	TO-220AB (Pb-Free)	1000 Units / Box
MCR12NG		

^{1.} Dimensioning and tolerancing per ansi y14.5m, 1982.

^{2.} Controlling dimension: inch.

Dimension z defines a zone where all body and lead irregularities are allowed.