	SPEC No.
	ISSUE : Feb. 2 2006
TENTATIV	VE SPECIFICATIONS
Product Type	Power Supply IC for CCD Module
Model No	IR3M63U
FOMERS ACCEPTANCE	
TOMERS ACCEPTANCE	
	PRESENTED
	01 Tim
	BY: Id. Frujita
	01 Tim
	BY: N. Frujita H.Fujita Dept. General Manager
	BY: N. Frujita H.Fujita
	BY: N. Frujita H.Fujita Dept. General Manager
	BY: <u>W. Frujita</u> H.Fujita Dept. General Manager REVIEWED BY: PREPARED BY: <u><u>M. Morikawa</u> <u>W.Ryu</u> Engineering Department IV</u>
TOMERS ACCEPTANCE	BY: N. Frujita H.Fujita Dept. General Manager REVIEWED BY: PREPARED BY: N. Morikawa Y. Ryu

- Handle this document carefully for it contains material protected by international copyright law. Any reproduction, full or in part, of this material is prohibited without the express written permission of the company.
- When using the products covered herein, please observe the conditions written herein and the precautions outlined in the following paragraphs. In no event shall the company be liable for any damages resulting form failure to strictly adhere to these conditions and precautions.
 - The products covered herein are designed and manufactured for the following application areas. When using the products covered herein for the equipment listed in paragraph (2), even for the following application areas, be sure to observe the precautions given in Paragraph (2). Never use the products for the equipment listed in Paragraph (3).
 - •Office electronics
 - ·Instrumentation and measuring equipment
 - •Machine tools
 - •Audiovisual equipment

•Home appliances

- ·Communication equipment other than for trunk lines
- (2) These contemplating using the products covered herein for the following equipment which demands high reliability, should first contact a sales representative of the company and then accept responsibility for incorporating into the design fail-safe operation, redundancy, and other appropriate measures for ensuring reliability and safety of the equipment and the overall system.

• Control and safety devices for airplanes, trains, automobiles, and other transportation equipment

- ·Mainframe computers
- traffic control systems
- ·Gas leak detectors and automatic cutoff devices
- •Rescue and security equipment
- •Other safety devices and safety equipment, etc.
- (3) Do not use the products covered herein for the following equipment which demands extremely high performance in terms of functionality, reliability, or accuracy
 - ·Aerospace equipment
 - •Communications equipment for trunk lines
 - Control equipment for the nuclear power industry
 - •Medical equipment related to life support, etc.
- (4) Please direct all queries and comments regarding the interpretation of the above three Paragraphs to a sales representative of the company.

• Please direct all queries regarding the products covered herein to a sales representative of the company.

CONTENTS

		Page
1.	General Description	2
2.	Features	2
3.	Pin Connections	2
4.	Pin Description	3
5.	Block Diagram and Basic Connections	5
6.	External Components List	5
7.	Operation Description(1) Power Supply Generation(2) Start / Stop Sequence(3) 3.6V Regulator(4) 3.3V Regulator, 1.8V Regulator(5) Charge Pumps, 15V Regulator, -8V Regulator(6) Over-current Protection	6
8.	Absolute Maximum Ratings	9
9.	Notes	9
10.	Electrical Characteristics	10
11.	Package and Packing Specification	11

1. General Description

SHARP

The Sharp IR3M63U is a power supply IC for CCD camera modules. This single chip can simultaneously offer positive and negative output voltages for CCD power supply from a single input, with a buck switching power supply, charge pumps and regulators. Each output can be controlled by CTL input, and its order of priority is determined by internal control not to damage CCDs.

- 2. Features
 - (1) Power supply voltage : $4.5V \sim 10V$
 - (2) Buck switching power supply : output voltage 3.6V, frequency 1MHz
 - (3) Boost / inverting charge pump frequency : 200kHz
 - (4) Linear regulator 1 : output voltage 3.3V, maximum output current 120mA

150mA (no load on linear regulator 2)

- (5) Linear regulator 2 : output voltage 1.8V, maximum output current 50mA
- (6) Boost charge pump + linear regulator : 15V / max. 12mA
- (7) Inverting charge pump + linear regulator : -8V / max. 2.5mA
- (8) Containing power supply sequence controller
- (9) Containing over-current protection circuits
- (10) P type silicon substrate monolithic IC
- (11) Lead free
- (12) 32-pin VQFN (5.2 mm x 5.2 mm) plastic package
- (13) Not designed or rated as radiation hardened
- 3. Pin Connections

IR3M63U

4. Pin Description

Pin No.	Pin Name	I/O	Vol./ Vth	Equivalent Circuit	Description
32	CTL	Ι	1.5V at Vcc = 5V		Control input pin for 1.8V, 3.3V, 15V and -8V outputs. (High : Start ; Low : Stop)
2	VREF	-	1.25V		Output pin for 1.25V reference voltage. Normally open.
5	SWOUT	0		PVcc Swout	Output pin for 3.6V buck switching power supply. Connect an inductor and a diode.
6	CS	I	-		Sense voltage input (high) pin for over-current control of 3.6V power supply.
7 9	OUT1P8 OUT3P3	0	-	FB OUT3P3 OUT3P3 OUT1P8	Output pin for 3.3V / 1.8V regulator. Connect to GND through a capacitor.
11	VMOUT	0	-	VREF FB FB GND	Output pin for -8V regulator. Connect to GND through a capacitor.
12	VPOUT	0	-	CPPO CPPO VPOUT VPOUT GND	Output pin for 15V regulator. Connect to GND through a capacitor.

IR3M63U

Pin No.	Pin Name	I/O	Vol./ Vth	Equivalent Circuit	Description
14	CPNO		-		Output capacitor connection pin for inverting charge pump. Connect to GND through a capacitor for regulating.
15	CP1N				Flying capacitor 1 negative pin. Connect a capacitor from CP1N to CP1P.
16	CP1P	-		VIN2	Flying capacitor 1 positive pin. Connect a capacitor from CP1P to CP1N.
18	СРРО	_			Output capacitor connection pin for boost charge pump. Connect to GND through a capacitor for regulating.
19	CP2P				Flying capacitor 2 positive pin. Connect a capacitor from CP2P to CP2N.
20 22 24	CP2N CP3N CP4N	-	-	VIN1 - CP4N CP5P CP4P CP2N CP2N	Flying capacitor 2, 3 and 4 negative pin. Connect capacitors from CP2N to CP2P, from CP3N to CP3P, and from CP4N to CP4P.
21 23 25	CP3P CP4P CP5P			CP3P	Flying capacitor 3, 4 and 5 positive pin. Connect capacitors from CP3P to CP3N, from CP4P to CP4N, and from CP5P to CP5N.
26	CP5N	-	-		Flying capacitor 5 negative pin. Connect a capacitor from CP5N to CP5P.
29	IREF	-	1.25V		Oscillation frequency setting pin for charge pumps. Connect to GND through a resistor.
3 13 28	PGND1 PGND2 PGND3	: _		· · · · · · ·	GND pin (3.6V buck switching power supply) GND pin (charge pumps)
30	GND				GND pin (control circuits)
4	PVCC		=VCC		Power supply pin (3.6V buck switching power supply)
8	FB		3.6V		Power supply (control input), input for 3.6V output voltage monitor and sense voltage input (low) pin for over-current control of 3.6V power supply.
17	VIN2	-	10.8V		Power supply pin (inverting charge pump) Connect to CP4P pin.
27	VIN1		=FB		Power supply pin (charge pumps) Connect to FB pin.
31	VCC		4.5V to 10V		Power supply pin (control circuits)

5. Block Diagram and Basic Connections

Fig. 2

6. External Components List

Symbol	Parts Name	Value	Size	Model No.	Maker	Voltage Limit (standard)
Rref	Resistor for charge pump freq. setting	120kΩ	1005			-
cvcc	Input power supply capacitor	2.2 μ F	1608	*MK107BJ105K	Taiyo Yuden	Vcc x 2
COIL	Inductor	10 μ H	3225	CBC3225T100M	Taiyo Yuden	-
SBD	Schottky diode for regenerative operation		2125	RB551V-30	Rohm	Vcc
Rsense	Current sense resistor	200m Ω	1608	ERJ3RSFR20	Matsushita	-
C_3.6v	3.6V output capacitor	2.2 μ F	1608	JMK107BJ225K	Taiyo Yuden	6.3
C_3.3v	3.3V output capacitor	1 µ F	1005	JMK105BJ105K	Taiyo Yuden	6.3
C_1.8v	1.8V output capacitor	1μF	1005	JMK105BJ105K	Taiyo Yuden	6.3
C_15v	Output capacitor for boost	1μF	1608	TMK107BJ105K	Taiyo Yuden	25
C8v	Output capacitor for inverting	1μF	1608	EMK107BJ105K	Taiyo Yuden	16
CPN	Power supply capacitor for inverting	1μF	1608	EMK107BJ105K	Taiyo Yuden	16
CP1	Flying capacitor 1	1 µ F	1608	EMK107BJ105K	Taiyo Yuden	16
СРР	Power supply capacitor for boost	1 µ F	1608	TMK107BJ105K	Taiyo Yuden	25
CP2	Flying capacitor 2	1μF	1005	JMK105BJ105K	Taiyo Yuden	6.3
CP3	Flying capacitor 3	1μF	1005	JMK105BJ105K	Taiyo Yuden	6.3
CP4	Flying capacitor 4	1μF	1005	JMK105BJ105K	Taiyo Yuden	6.3
CP5	Flying capacitor 5	1μF	1005	JMK105BJ105K	Taiyo Yuden	6.3

- 7. Operation Description
 - (1) Power Supply Generation

- Fig. 3
- (i) Buck switching DC / DC converter creates 3.6V from input voltage.
- (ii) LDO linear regulator 1 makes 3.3V, and LDO linear regulator 2 makes 1.8V from 3.6V input.
- (iii) After 3.6V input is boosted to 18.0V (5 times higher), 15V output is generated through an LDO linear regulator.
- (iv) After 3.6V input is boosted to 10.8V (3 times higher) and then inverted to -10.8V,
 -8V output is generated through an LDO linear regulator.

(2) Start / Stop Sequence

Input terminal CTL controls start / stop of 1.8V, 3.3V, 15V and -8V outputs, respectively. (High: Start; Low: Stop)

Not to damage CCDs, the following priority is set in start / stop sequence by inside settings.

Start Sequence :

Start sequence by the following order : $1.8V \rightarrow 3.3V \rightarrow 15V \rightarrow -8V$ Outputs are observed in this IC for the regulations to start in the order above. (Refer to Fig. 4)

Stop Sequence :

1.8V, 3.3 V, 15V and -8V outputs are turned off simultaneously.

1.8V, 3.3V and 3.6V outputs are only stopped their voltage generations.

15V and -8V outputs are stopped their voltage generations, and their output capacitors are discharged.

Fig. 4

(3) 3.6V Regulator

3.6V regulator starts operating when the level of CTL changes to H. It monitors output voltage and inductor current, when they are lower than regulation levels, output MOS transistor turns on for the appointed time. If the output voltage is still lower than its regulation level after the appointed time, the output MOS transistor remains on.

Over-current protection works in fold-back type drooping characteristic after the regulation starts.

(4) 3.3V Regulator, 1.8V Regulator

3.3V and 1.8V outputs are generated from 3.6V power supply. The currents are automatically limited by the maximum ability to provide set inside, and these circuits are also protected by the over-current protection of 3.6V power supply.

(5) Charge Pumps, 15V Regulator, -8V Regulator

When 3.6V power supply is set, charge pumps start operating. According to the appointed output permission conditions, each regulator (15V, -8V) starts operating to generate output voltage.

The regulators are protected against over-current by limiting maximum current provided to capacitors.

(6) Over-current Protection

Each output is protected against over-current. The details are mentioned above in (3) \sim (5).

8. Absolute Maximum Ratings

Please use this product within the following absolute maximum ratings all the time, including startup and shutdown.

mbol /cc	Conditions VCC, PVCC	Rating 20.0	Unit
/cc	VCC, PVCC	20.0	
		20.0	
T _{IN1}	CTL	-0.3 ~ 20.0	v
PD	$Ta \leq 25 \degree C$	1428	mW
PD	$Ta > 25 \ ^{\circ}C$	14.3	mW/°C
OPR		-30 ~ 85	°°C
STG		-55 ~ 150	°C
	/ini Pd APd Copr Stig	PDTa $\leq 25 ^{\circ} \mathbb{C}$ APDTa > 25 ^{\circ} \mathbb{C}COPR	PDTa $\leq 25 ^{\circ}$ C1428APDTa > 25 ^{\circ}C14.3COPR-30 ~ 85

(*1) natural convection, on-board (based on SEMI 42-96)

Fig. 5 shows power dissipation temperature characteristic.

9. Notes

- (1) Connect all GND pins (GND, PGND1, PGND2, PGND3) together as close as possible to this IC not to make any voltage difference between these GND pins, at startup and shutdown.
- (2) Connect all Vcc pins (VCC, PVCC) together as close as possible to this IC not to make any voltage difference between these Vcc pins, at startup and shutdown.
- (3) Form GND patterns to reduce its impedance.
- (4) Place the decoupling capacitor (CVCC) between Vcc and GND as close as possible to this IC, and do not short the GND or Vcc pins nearer to the IC than the decoupling capacitor.
- (5) Form the line patterns of IREF and VREF pins not to cause noise on them. The following pins have signals of larger amplitude in this IC, be careful of wiring them.
 Both sides of flying capacitors for charge pumps (CP1~5)
 Output of switching regulator (SWOUT)
- (6) Do not leave the input pin (CTL) floating. Connect the pin to GND or Vcc when it is not in use.

10. Electrical Characteristics

		a = 25°C, VCC = PVCC = 5V, CTL ock Diagram and Basic Connections"			mponents	List."
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Power supply voltage	Vcco	VCC, PVCC	4.5		10.0	v
Quiescent current at operation	Ivcc	CTL = H, no load	-	19	38	mA
Shutdown current	Iccs	CTL = L	-	-	3	μΑ
Oscillation frequency SW	foscs	SWOUT, maximum frequency	500	1000	1800	kHz
Oscillation frequency CP	foscc	VIN2, charge pump power supply	150	200	250	kHz
Standard voltage	Vref	VREF	1.231	1.250	1.269	V
3.3V voltage	V3p3a	OUT3P3, Io = $0 \sim 120$ mA (outflow)	3.168	3.300	3.432	v
	V3p3b	OUT3P3, Io = $0 \sim 150$ mA (outflow), no load on OUT1P8	3.168	3.300	3.432	v
1.8V voltage	V1p8	OUT1P8, Io = $0 \sim 50$ mA (outflow)	1.728	1.800	1.872	v
Boosted voltage	Vp	VPOUT, Io = $0 \sim 12$ mA (outflow)	14.62	15.00	15.38	v
Inverted voltage	Vm	VMOUT, Io = $0 \sim 2.5$ mA (inflow)	-7.68	-8.00	-8.32	^v
Control logic threshold H	Vith	CTL H threshold	0.9	1.5	2.5	V
Control logic threshold hysteresis width	Vihys	Hysteresis width at $H \rightarrow L$	0.1	0.3	0.5	v
3.6V output over-current detection voltage	Vcs	FB = 3.6 V (*1)	80	100	120	mV
3.3V output maximum current	Imaxla	OUT3P3 (outflow)	120	-		mA
	Imax1b	OUT3P3 (outflow), no load on OUT1P8	150	-	-	mA
Boosted output maximum current	Iomax2	VPOUT (outflow)	12	-	-	mA
Inverted output maximum current	Iomax3	VMOUT (inflow)	2.5	-	-	mÅ
1.8V output maximum current	Iomax4	OUT1P8 (outflow)	50	-	-	mA
		· · · · · · · · · · · · · · · · · · ·				

(*1) The voltage difference between CS and FB pins when the oscillation at SWOUT stops, after raising CS pin voltage from FB pin voltage.

11 Package and packing specification

[Applicability]

This specification applies to an IC package of the LEAD-FREE delivered as a standard specification.

1. Storage Conditions.

1-1. Storage conditions required before opening the dry packing.

• Normal temperature : 5∼40°C

• Normal humidity : 80% (Relative humidity) max.

• Storage period : One year max.

*"Humidity" means "Relative humidity"

1-2. Storage conditions required after opening the dry packing.

In order to prevent moisture absorption after opening, ensure the following storage conditions apply:

(1) Storage conditions for one-time soldering. (Convection reflow^{*1}, IR/Convection reflow.^{*1})

• Temperature : $5 \sim 25^{\circ}$ C

• Humidity : 60% max.

• Period : 96 hours max. after opening.

(2) Storage conditions for two-time soldering. (Convection reflow^{*1}, IR/Convection reflow.^{*1})

a. Storage conditions following opening and prior to performing the 1st reflow.

• Temperature : $5 \sim 25^{\circ}$ C

• Humidity : 60% max.

· Period : 96 hours max. after opening.

b. Storage conditions following completion of the 1st reflow and prior to performing the 2nd reflow.

• Temperature : 5~25℃

• Humidity : 60% max.

• Period : 96 hours max. after completion of the 1st reflow.

^{*1}:Air or nitrogen environment.

1-3. Temporary storage after opening.

To re-store the devices before soldering, do so only once and use a dry box or place desiccant (with a blue humidity indicator) with the devices and perform dry packing again using heat-sealing.

The storage period, temperature and humidity must be as follows :

(1) Storage temperature and humidity.

X1 : External atmosphere temperature and humidity of the dry packing.

First opening	← X1 →	Re-sealing	— y —->	Re:opening	↓ X2 −−−−	 Mounting
	5∼25℃ 60% max.	1	%1 5∼40℃ 80%max.	Q	5∼25℃ 60% max.	O

(2) Storage period.

• X1 + X2: Refer to Section 1-2(1) and (2)a, depending on the mounting method.

• Y : Two weeks max.

- 2. Baking Condition.
 - (1) Situations requiring baking before mounting.
 - Storage conditions exceed the limits specified in Section 1-2 or 1-3.
 - · Humidity indicator in the desiccant was already red (pink) when opened.
 - (Also for re-opening.)
 - (2) Recommended baking conditions.
 - · Baking temperature and period :
 - $120+10/-0^{\circ}$ for 2~3 hours.
 - The above baking conditions apply since the trays are heat-resistant.
 - (3) Storage after baking.
 - After baking, store the devices in the environment specified in Section 1-2 and mount immediately.

3. Surface mount conditions.

The following soldering conditions are recommended to ensure device quality.

- 3-1.Soldering.
- (1) Convection reflow or IR/Convection reflow. (one-time soldering or two-time soldering in air or nitrogen environment)
 - Temperature and period :
 - A) Peak temperature.
 - B) Heating temperature.
 - C) Preheat temperature.
 - D) Temperature increase rate.
 - Measuring point : IC package surface.

• Temperature profile :

250°C max. 40 to 60 seconds as 220°C It is 150 to 200°C, and is 120±30 seconds It is 1 to 3°C/seconds

(1) Ultrasonic washing power : 25 watts / liter max.

(2) Washing time : Total 1 minute max.

(3) Solvent temperature : $15 \sim 40^{\circ}$ C

5. Package outline specification.

Refer to the attached drawing.

(Plastic body dimensions do include burr of resin.)

The contents of LEAD-FREE TYPE application of the specifications. (*2)

6.Markings.

6-1. Marking details. (The information on the package should be given as follows.)

- (1) Product name : 3M63
- (2) Company name : S

Date code	: (Example) YYWWX
$YY \rightarrow$	Denotes the production year. (Last two digits of the year.)
WW \rightarrow	Denotes the production week. $(01 \cdot 02 \cdot \sim \cdot 52 \cdot 53)$
$X \rightarrow$	Denotes the production ref. code (1 digit).

6-2.Marking layout.

(3)

The layout is shown in the attached drawing.

(However, this layout does not specify the size of the marking character and marking position.)

LEAD FINISH or BALL TYPE	LEAD-FREE TYPE (Sn-2%Bi) 10µm TYP.(Min. 5µm)	
DATE CODE	They are those with an underline.	
The word of "LEAD FREE" is printed on the packing label	Printed	

*2 The contents of LEAD-FREE TYPE application of the specifications.

IR3M63U

(Note) It is those with an underline printing in a date code because of a LEAD-FREE type.

7.Packing Specifications (Dry packing for surface mount packages.) 7-1.Packing materials.

Material name	Material specifications	Purpose		
Inner carton	Cardboard (4000 devices / inner carton	Packing the devices.		
	max.)	(10 trays / inner carton)		
Tray	Conductive plastic (400 devices / tray)	Securing the devices.		
Upper cover tray	Conductive plastic (1 tray / inner carton)	Securing the devices.		
Laminated aluminum	Aluminum polyethylene	Keeping the devices dry.		
bag				
Desiccant	Silica gel	Keeping the devices dry.		
Label	Paper	Indicates part number,		
		quantity, and packed date.		
PP band	Polypropylene (3 pcs. / inner carton)	Securing the devices.		
Outer carton	Cardboard (16000 devices / outer carton	Outer packing.		
	max.)			

(Devices must be placed on the tray in the same direction.)

- 7-2. Outline dimension of tray.
 - Refer to the attached drawing.
- 7-3.Outline dimension of carton.
 - Refer to the attached drawing.

8. Precautions for use.

- (1) Opening must be done on an anti-ESD treated workbench.
 - All workers must also have undergone anti-ESD treatment.
- (2) The trays have undergone either conductive or anti-ESD treatment.
 - If another tray is used, make sure it has also undergone conductive or anti-ESD treatment.
- (3) The devices should be mounted within one year of the date of delivery.

IR3M63U

SHARP IR3M63U (Note) The << LEAD-FREE >> display shows a lead-free article. "R.C." means "RoHS Compliant".

