

v01.0514

Typical Applications

The HMC751LC4 is ideal for:

- Point-to-Point Radios
- Point-to-Multi-Point Radios & VSAT
- Test Equipment and Sensors
- Military

HMC751LC4

SMT PHEMT LOW NOISE AMPLIFIER, 17 - 27 GHz

Features

Noise Figure: 2.2 dB Gain: 25 dB OIP3: +25 dBm Single Supply: +4V @ 73 mA 50 Ohm Matched Input/Output RoHS Compliant 4 x 4 mm Package

Functional Diagram

General Description

The HMC751LC4 is a high dynamic range GaAs pHEMT MMIC Low Noise Amplifier (LNA) housed in a leadless "Pb free" RoHS compliant SMT package. The HMC751LC4 provides 25 dB of small signal gain, 2.2 dB of noise figure and output IP3 of +25 dBm. The P1dB output power of +13 dBm also enables the LNA to function as a LO driver for balanced, I/Q or image reject mixers. The HMC751LC4 allows the use of surface mount manufacturing techniques.

Electrical Specifications, $T_A = +25^{\circ}$ C, Vdd 1, 2, 3 = +4V

Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range	17 - 20		20 - 27		GHz		
Gain	22	24		23	25		dB
Gain Variation Over Temperature		0.025			0.028		dB/ °C
Noise Figure		2.2	2.8		2.0	2.6	dB
Input Return Loss		17			15		dB
Output Return Loss		16			15		dB
Output Power for 1 dB Compression (P1dB)		13			13		dBm
Saturated Output Power (Psat)		15			15		dBm
Output Third Order Intercept (IP3)		25			25		dBm
Supply Current (Idd)(Vdd = +4V)	50	73	90	50	73	90	mA

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

SMT PHEMT LOW NOISE AMPLIFIER, 17 - 27 GHz

Gain vs. Temperature

v01.0514

Input Return Loss vs. Temperature

Noise Figure vs. Temperature

Gain vs. Supply Voltage

Output Return Loss vs. Temperature

Output IP3 vs. Temperature

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

SMT PHEMT LOW NOISE AMPLIFIER, 17 - 27 GHz

P1dB vs. Temperature

v01.0514

Psat vs. Temperature

P1dB vs. Supply Voltage

Reverse Isolation vs. Temperature

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v01.0514

SMT PHEMT LOW NOISE AMPLIFIER, 17 - 27 GHz

Absolute Maximum Ratings

Drain Bias Voltage (Vdd1, Vdd2, Vdd3)	+5.5 Vdc
RF Input Power (RFIN)(Vdd = +4 Vdc)	-5 dBm
Channel Temperature	175 °C
Continuous Pdiss (T= 85 °C) (derate 11.2 mW/°C above 85 °C)	1 W
Thermal Resistance (channel to ground paddle)	89 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C

Typical Supply Current vs. Vdd

Vdd (Vdc)	ldd (mA)
+3.5	69
+4.0	73
+4.5	77

Note: Amplifier will operate over full voltage range shown above.

ELECTROSTATIC SENSITIVE DEVICE **OBSERVE HANDLING PRECAUTIONS**

Outline Drawing

PIN 24 0.157±0.005 .014 0.36 .009 0.24 .013 [0.32] REF [4.00±0.13] 19 24 PIN 00000 PIN 1 18 \square 57±0.005 H751 D 4.00±0.13] D D 0.56 0.44 .022 D D X X X X101 D 0 13 \square 6 $\Phi \Box \Box \Box \Box \Box$ 12 7 .098 [2.50] LOT NUMBER SQUARE EXPOSED 0.040 [1.02] GROUND .122 [3.10] MAX PADDLE SEATING NOTES: PLANE 1. PACKAGE BODY MATERIAL: ALUMINA 2. LEAD AND GROUND PADDLE PLATING: 30-80 MICROINCHES -C-GOLD OVER 50 MICROINCHES MINIMUM NICKEL

- 3. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- 4. LEAD SPACING TOLERANCE IS NON-CUMULATIVE
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm DATUM
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [2]	
HMC751LC4	Alumina, White	Gold over Nickel	MSL3 ^[1]	H751 XXXX	
[1] Max peak reflow te	mperature of 260 °C				

[2] 4-Digit lot number XXXX

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

BOTTOM VIEW

v01.0514

HMC751LC4

SMT PHEMT LOW NOISE AMPLIFIER, 17 - 27 GHz

ROHS V

Pin Descriptions

Pin Number	Function	Description	Interface Schematic	
1, 3, 5 - 7, 12 - 14, 16, 18, 19, 24	GND	These pins and package bottom must be connected to RF/DC ground.		
2, 8 - 11, 17, 23	N/C	This pin may be connected to RF/DC ground. Performance will not be affected.		
4	RFIN	This pin is AC coupled and matched to 50 Ohms.		
15	RFOUT	This pin is AC coupled and matched to 50 Ohms.		
22, 21, 20	Vdd1, 2, 3	Power Supply Voltage for the amplifier. External bypass capacitors of 100 pF, 1,000 pF and 2.2 μF are required.	OVdd1,2,3	

Application Circuit

Component	Value
C1, C2, C3	100 pF
C4, C5, C6	1,000 pF
C7, C8, C9	2.2 µF

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v01.0514

SMT PHEMT LOW NOISE AMPLIFIER, 17 - 27 GHz

Evaluation PCB

List of Materials for Evaluation PCB 123815 [1]

Item	Description
J1 - J2	PCB Mount K Connector
J3 - J6	DC Pin
C1 - C3	100 pF Capacitor, 0402 Pkg.
C4 - C6	1,000 pF Capacitor, 0603 Pkg.
C7 - C9	2.2 µF Capacitor, Tantalum
U1	HMC751LC4 Amplifier
PCB [2]	123813 Evaluation PCB

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350 or Arlon 25FR

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.