

Advance Technical Information

PolarHV[™] IGBT

IXGH28N60B3D1

Symbol	Test Conditions	Maximum Ratings			
V _{CES}	$T_{J} = 25^{\circ}C \text{ to } 150^{\circ}C$	600	V		
V _{CGR}	$T_{J} = 25^{\circ}C$ to 150°C, $R_{GE} = 1M\Omega$	600	V		
V _{ges}	Continuous	± 20	V		
V _{GEM}	Transient	± 30	V		
I _{C25}	$T_c = 25^{\circ}C$	66	A		
I _{C110}	$T_c = 110^{\circ}C$	28	А		
I _{F110}	$T_c = 110^{\circ}C$	10	А		
I _{CM}	$T_c = 25^{\circ}C$, 1ms	150	A		
SSOA (RBSOA)	V_{ge} = 15V, T_{VJ} = 125°C, R_{g} = 10 Ω Clamped inductive load @ \leq 600V	I _{CM} = 60	A		
P _c	$T_c = 25^{\circ}C$	190	W		
T,		-55 +150	°C		
Т _{јм}		150	°C		
T _{stg}		-55 +150	°C		
T _l T _{sold}	1.6mm (0.062 in.) from case for 10 seconds Plastic body for 10 seconds	300 260	°C ℃		
M _d	Mounting torque (M3)	1.13/10	Nm/lb.in.		
Weight		6	g		

Symbol (T _J = 25°C	Test Conditions unless otherwise specified)	Cha Min.	Characteristic Va Min. Typ. M		
BV _{CES}	I _c = 250μA, V _{GE} = 0V	600			V
V _{GE(th)}	$I_c = 250 \mu A$, $V_{ce} = V_{ge}$	3.0		5.0	V
I _{CES}	$V_{CE} = V_{CES} V_{GE} = 0V$ $T_{J} = 125^{\circ}C$	2		50 1.0	μA mA
I _{GES}	$V_{_{CE}}$ = 0V, $V_{_{GE}}$ = ± 20V			±100	nA
V _{CE(sat)}	I _c = 24A, V _{GE} = 15V, Note 1		1.5	1.8	V

TO-247 (IXGH)

G = Gate	C = Collector
E = Emitter	TAB = Collector

Features

- Square RBSOA
- High current handling capability
- MOS Gate turn-on
 - drive simplicity

Applications

- PFC circuits
- Uninterruptible power supplies (UPS)
- Switched-mode and resonant-mode power supplies
- AC motor speed control
- DC servo and robot drives
- DC choppers

LIXYS

IXGH28N60B3D1

SymbolTest Conditions $(T_J = 25^{\circ}C, unless otherwise specified)$					
g_{fs} $I_{c} = I_{C110}, V_{CE} = 10V, Note 1$	18	30	s		
C _{ies}		2320	pF		
C_{oes} $V_{CE} = 25V, V_{GE} = 0V, f = 1MHz$		176	pF		
C _{res}		24	pF		
Q _a)		62	nC		
Q_{ge} $I_{C} = I_{C110}, V_{GE} = 15V, V_{CE} = 0.5 \bullet V_{OE}$	CES	11	nC		
Q _{gc}		23	nC		
t _{d(on)}		19	ns		
t		24	ns		
E_{on} Inductive load, $T_{J} = 25^{\circ}C$		0.34	mJ		
$I_c = 24A, V_{GE} = 15V$ $I_d(off)$ $V_c = 400V R = 100$		125	200 ns		
t_{fi} V _{CE} = 400V, R _G = 10Ω		100	160 ns		
E _{off}		0.65	1.2 mJ		
t _{d(on)}		19	ns		
t.		26	ns		
\mathbf{E}_{on} Inductive load, $\mathbf{T}_{J} = 125^{\circ}\mathbf{C}$		0.6	mJ		
$I_{c} = 24A, V_{GE} = 15V$		180	ns		
t_{fi} $V_{CE} = 400V, R_G = 10\Omega$		170	ns		
E _{off}		1.0	mJ		
R _{thJC}			0.66 °C/W		
R _{thCS}		0.21	°C/W		

Reverse Diode (FRED)

		Characteristic Values Min. Typ. Max.			
V _F	$I_{F} = 24A, V_{GE} = 0V, \text{ Note 1}$ $T_{J} = 150^{\circ}\text{C}$		2.5 V 1.7 V		
I _{RM}	$\begin{cases} I_{_{\rm F}} &= 24A, V_{_{\rm GE}} = 0V, -di_{_{\rm F}}/dt = 100A/\mu s \\ V_{_{\rm R}} &= 100V \end{cases}$	5	A		
t _{rr}	$I_{\rm F} = 1$ A, $-di_{\rm F}/dt = 100$ A/µs, $V_{\rm R} = 30$ V	25	ns		
) T _J = 100°C	100	ns		
$R_{_{thJ}}$			1.0 K/W		

Note 1: Pulse test, t \leq 300 $\mu s;$ duty cycle, d \leq 2%.

ADVANCE TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

IXYS reserves the right to change limits, test conditions, and dimensions.

IXYS MOSFETs and IGBTs are covered	4,835,592	4,931,844	5,049,961	5,237,481	6,162,665	6,404,065 B1	6,683,344	6,727,585	7,005,734 B2	7,157,338B2
by one or moreof the following U.S. patents:	4,850,072	5,017,508	5,063,307	5,381,025	6,259,123 B1	6,534,343	6,710,405 B2	6,759,692	7,063,975 B2	
	4,881,106	5,034,796	5,187,117	5,486,715	6,306,728 B1	6,583,505	6,710,463	6,771,478 B2 7,071,537		

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.